Learn More
The transcription factors interferon regulatory factor 3 (IRF3) and NF-kappaB are required for the expression of many genes involved in the innate immune response. Viral infection, or the binding of double-stranded RNA to Toll-like receptor 3, results in the coordinate activation of IRF3 and NF-kappaB. Activation of IRF3 requires signal-dependent(More)
The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating(More)
Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA(More)
A simple and efficient method for synthesizing pure single stranded RNAs of virtually any structure is described. This in vitro transcription system is based on the unusually specific RNA synthesis by bacteriophage SP6 RNA polymerase which initiates transcription exclusively at an SP6 promoter. We have constructed convenient cloning vectors that contain an(More)
SC-35 is a non-snRNP spliceosome component that is specifically recognized by the anti-spliceosome monoclonal antibody alpha SC-35. In this paper we provide direct evidence that SC-35 is an essential splicing factor and we examine the immunolocalization of SC-35 by confocal laser scanning microscopy and by electron microscopy. We have found that the(More)
A monoclonal antibody raised against mammalian spliceosomes specifically recognizes a non-snRNP factor required for spliceosome assembly. This splicing factor is highly concentrated in discrete regions within the nucleus, in a pattern that is a distinct subset of that seen with anti-snRNP antibodies. These observations are evidence that spliceosome assembly(More)
We demonstrate an essential role for the proteasome complex in two proteolytic processes required for activation of the transcription factor NF-kappa B. The p105 precursor of the p50 subunit of NF-kappa B is processed in vitro by an ATP-dependent process that requires proteasomes and ubiquitin conjugation. The C-terminal region of p105 is rapidly degraded,(More)
Gene expression in eukaryotes requires several multi-component cellular machines. Each machine carries out a separate step in the gene expression pathway, which includes transcription, several pre-messenger RNA processing steps and the export of mature mRNA to the cytoplasm. Recent studies lead to the view that, in contrast to a simple linear assembly line,(More)
Specific recognition and pairing of the 5' and 3' splice sites are critical steps in pre-mRNA splicing. We report that the splicing factors SC35 and SF2/ASF specifically interact with both the integral U1 small nuclear ribonucleoprotein (snRNP U1-70K) and with the 35 kd subunit of the splicing factor U2AF (U2AF35). Previous studies indicated that the U1(More)