Learn More
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. We(More)
We consider here the problem of building a never-ending language learner; that is, an intelligent computer agent that runs forever and that each day must (1) extract, or read, information from the web to populate a growing structured knowledge base, and (2) learn to perform this task better than on the previous day. In particular, we propose an approach and(More)
The question of how the human brain represents conceptual knowledge has been debated in many scientific fields. Brain imaging studies have shown that different spatial patterns of neural activation are associated with thinking about different semantic categories of pictures and words (for example, tools, buildings, and animals). We present a computational(More)
Interpreting brain image experiments requires analysis of complex, multivariate data. In recent years, one analysis approach that has grown in popularity is the use of machine learning algorithms to train classifiers to decode stimuli, mental states, behaviours and other variables of interest from fMRI data and thereby show the data contain information(More)
The problem of formulating general concepts from specific training examples has long been a major focus of machine learning research. While most previous research has focused on empirical methods for generalizing from a large number of training examples using no domain-specific knowledge, in the past few years new methods have been developed for applying(More)
The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable knowledge base whose content mirrors that of the World Wide Web. Such a knowledge base would enable much more eeective retrieval of Web information, and(More)
Over the past decade, functional Magnetic Resonance Imaging (fMRI) has emerged as a powerful new instrument to collect vast quantities of data about activity in the human brain. A typical fMRI experiment can produce a three-dimensional image related to the human subject's brain activity every half second, at a spatial resolution of a few millimeters. As in(More)
The World Wide Web is a vast source of information accessible to computers, but understandable only to humans. The goal of the research described here is to automatically create a computer understandable knowledge base whose content mirrors that of the World Wide Web. Such a knowledge base would enable much more eeective retrieval of Web information, and(More)