Learn More
The ventral midline of the nervous system is an important choice point at which growing axons decide whether to cross and project contralaterally or remain on the same side of the brain. In Drosophila, the decision to cross or avoid the CNS midline is controlled, at least in part, by the Roundabout (Robo) receptor on the axons and its ligand, Slit, an(More)
Diffusible chemorepellents play a major role in guiding developing axons toward their correct targets by preventing them from entering or steering them away from certain regions. Genetic studies in Drosophila revealed a novel repulsive guidance system that prevents inappropriate axons from crossing the CNS midline; this repulsive system is mediated by the(More)
We have analyzed the role of the Slit family of repellent axon guidance molecules in the patterning of the axonal projections of retinal ganglion cells (RGCs) within the embryonic rat diencephalon and whether the slits can account for a repellent activity for retinal axons released by hypothalamus and epithalamus. At the time RGC axons extend over the(More)
Slit is secreted by cells at the midline of the central nervous system, where it binds to Roundabout (Robo) receptors and functions as a potent repellent. We found that migrating mesodermal cells in vivo respond to Slit as both an attractant and a repellent and that Robo receptors are required for both functions. Mesoderm cells expressing Robo receptors(More)
  • 1