Learn More
Two types of cannabinoid receptor have been discovered so far, CB(1) (2.1: CBD:1:CB1:), cloned in 1990, and CB(2) (2.1:CBD:2:CB2:), cloned in 1993. Distinction between these receptors is based on differences in their predicted amino acid sequence, signaling mechanisms, tissue distribution, and sensitivity to certain potent agonists and antagonists that show(More)
Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known. The hydrophobic nature of these(More)
Cannabinoid receptor mRNA was localized in adult rat brain by 35S-tailed oligonucleotide probes and in situ hybridization histochemistry. Labelling is described as uniform or non-uniform depending on the relative intensities of individual cells expressing cannabinoid receptor mRNA within a given region or nucleus. Uniform labelling was found in the(More)
A second isoform of the human vesicular monoamine transporter (hVMAT) has been cloned from a pheochromocytoma cDNA library. The contribution of the two transporter isoforms to monoamine storage in human neuroendocrine tissues was examined with isoform-specific polyclonal antibodies against hVMAT1 and hVMAT2. Central, peripheral, and enteric neurons express(More)
The human CC chemokine I-309 is a potent monocyte chemoattractant and inhibits apoptosis in thymic cell lines. Here, we identify a specific human I-309 receptor, and name it CCR8 according to an accepted nomenclature system. The receptor has seven predicted transmembrane domains, is expressed constitutively in monocytes and thymus, and is encoded by a(More)
The gamma-aminobutyric acid(B) (GABA(B)) receptor was first demonstrated on presynaptic terminals where it serves as an autoreceptor and also as a heteroreceptor to influence transmitter release by suppressing neuronal Ca(2+) conductance. Subsequent studies showed the presence of the receptor on postsynaptic neurones where activation produces an increase in(More)
A family of five cholinergic muscarinic receptor genes (m1, m2, m3, m4, and m5) has recently been identified and cloned. In order to investigate the pharmacological properties of the individual muscarinic receptors, we have transfected each of these genes into Chinese hamster ovary cells (CHO-K1) and have established stable cell lines expressing each(More)
Vasoactive intestinal polypeptide (VIP) has a variety of physiological effects. Pharmacological evidence suggesting that VIP acts via multiple receptors has been confirmed by the cloning of two VIP receptors (VIP1 and VIP2) with very different amino acid sequences. At both the VIP1 and the VIP2 receptor VIP, PHI, PACAP38, and PACAP27 have similar potency to(More)
A family of 4 rat muscarinic receptors (m1, m2, m3, and m4) have recently been cloned and sequenced (Bonner et al., 1987). Since pharmacological probes that are presently available do not appear to distinguish among 3 of these muscarinic receptors, we constructed oligonucleotide probes corresponding to the N-terminal sequences of the muscarinic receptors(More)