Learn More
This paper contains three parts. In the first part we present a new side channel attack on plaintext encrypted by EME-OAEP PKCS#1 v.2.1. In contrast with Manger´s attack, we attack that part of the plaintext, which is shielded by the OAEP method. In the second part we show that Bleichenbacher's and Manger's attack on the RSA encryption scheme PKCS#1 v.1.5(More)
In this paper we present a practically feasible attack on RSA-based sessions in SSL/TLS protocols. These protocols incorporate the PKCS#1 (v. 1.5) encoding method for the RSA encryption of a premaster-secret value. The premaster-secret is the only secret value that is used for deriving all the particular session keys. Therefore, an attacker who can recover(More)
The article describes an attack on OpenPGP format, which leads to disclosure of the private signature keys of the DSA and RSA algorithms. The OpenPGP format is used in a number of applications including PGP, GNU Privacy Guard and other programs specified on the list of products compatible with OpenPGP, which is available at http://www.pgpi.org/products.(More)
Vaudenay has shown in [5] that a CBC encryption mode ([2], [9]) combined with the PKCS#5 padding [3] scheme allows an attacker to invert the underlying block cipher, provided she has access to a valid-padding oracle which for each input ciphertext tells her whether the corresponding plaintext has a valid padding or not. Having on mind the countermeasures(More)
Vaudenay [1] has presented an attack on the CBC mode of block ciphers, which uses padding according to the PKCS#5 standard. One of the countermeasures, which he has assumed, consisted of the encryption of the message M´= M || padding || hash(M || padding) instead of the original M. This can increase the length of the message by several blocks compared with(More)
Since its formulation in 1996, the Hidden Number Problem (HNP) plays an important role in both cryptography and cryptanalysis. It has a strong connection with proving security of Diffie-Hellman and related schemes as well as breaking certain implementations of DSA-like signature schemes. We formulate an extended version of HNP (EHNP) and present a(More)
This memo describes certain new cryptographic weakness of the passkey-based pairing of Bluetooth LE (BLE or BTLE, also known as Bluetooth Smart; as one prefers). The vulnerability discussed here extends the set of possible attacking scenarios that were already elaborated before by Mike Ryan in [4]. Instead of the passive sniffing attack on pairing secrets,(More)
  • 1