Tomás Pajdla

Learn More
The wide-baseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints is studied. A new set of image elements that are put into correspondence, the so called extremal regions, is introduced. Extremal regions possess highly desirable properties: the set is closed under 1. continuous (and(More)
It is known that the problem of multiview reconstruction can be solved in two steps: first estimate camera rotations and then translations using them. This paper presents new robust techniques for both of these steps, (i) Given pair-wise relative rotations, global camera rotations are estimated linearly in least squares, (ii) Camera translations are(More)
We tackle the problem of large scale visual place recognition, where the task is to quickly and accurately recognize the location of a given query photograph. We present the following three principal contributions. First, we develop a convolutional neural network (CNN) architecture that is trainable in an end-to-end manner directly for the place recognition(More)
We generalize the method of simultaneous linear estimation of multiple view geometry and lens distortion, introduced by Fitzgibbon at CVPR 2001 [6], to an omnidirectional (angle of view larger than 180) camera. The perspective camera is replaced by a linear camera with a spherical retina and a non-linear mapping of the sphere into the image plane. Unlike(More)
We analyze Kinect as a 3D measuring device, experimentally investigate depth measurement resolution and error properties and make a quantitative comparison of Kinect accuracy with stereo reconstruction from SLR cameras and a 3D-TOF camera. We propose Kinect geometrical model and its calibration procedure providing an accurate calibration of Kinect 3D(More)
Finding solutions to minimal problems for estimating epipolar geometry and camera motion leads to solving systems of algebraic equations. Often, these systems are not trivial and therefore special algorithms have to be designed to achieve numerical robustness and computational efficiency. The state of the art approach for constructing such algorithms is the(More)
Virtual immersive environments or telepresence setups often consist of multiple cameras that have to be calibrated. We present a convenient method for doing this. The minimum is three cameras, but there is no upper limit. The method is fully automatic and a freely moving bright spot is the only calibration object. A set of virtual 3D points is made by(More)
This paper presents a method for fully automatic and robust estimation of two-view geometry, autocalibration, and 3D metric reconstruction from point correspondences in images taken by cameras with wide circular field of view. We focus on cameras which have more than 180deg field of view and for which the standard perspective camera model is not sufficient,(More)