Learn More
The wide-baseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints is studied. A new set of image elements that are put into correspondence, the so called extremal regions, is introduced. Extremal regions possess highly desirable properties: the set is closed under 1. continuous (and(More)
It is known that the problem of multiview reconstruction can be solved in two steps: first estimate camera rotations and then translations using them. This paper presents new robust techniques for both of these steps. (i) Given pair-wise relative rotations, global camera rotations are estimated linearly in least squares. (ii) Camera translations are(More)
We generalize the method of simultaneous linear estimation of multiple view geometry and lens distortion, introduced by Fitzgibbon at CVPR 2001 [6], to an omnidirectional (angle of view larger than 180 •) camera. The perspective camera is replaced by a linear camera with a spherical retina and a non-linear mapping of the sphere into the image plane. Unlike(More)
We propose a novel method for the multi-view reconstruction problem. Surfaces which do not have direct support in the input 3D point cloud and hence need not be photo-consistent but represent real parts of the scene (e.g. low-textured walls, windows, cars) are important for achieving complete reconstructions. We augmented the existing Labatut CGF 2009(More)
This paper presents a method for fully automatic and robust estimation of two-view geometry, autocalibration, and 3D metric reconstruction from point correspondences in images taken by cameras with wide circular field of view. We focus on cameras which have more than 180 degrees field of view and for which the standard perspective camera model is not(More)
This paper presents a general solution to the determination of the pose of a perspective camera with unknown focal length from images of four 3D reference points. Our problem is a generalization of the P3P and P4P problems previously developed for fully calibrated cameras. Given four 2D-to-3D correspondences, we estimate camera position , orientation and(More)