Tomás A. Revilla

Learn More
A mathematical model examined a potential therapy for controlling viral infections using genetically modified viruses. The control of the infection is an indirect effect of the selective elimination by an engineered virus of infected cells that are the source of the pathogens. Therefore, this engineered virus could greatly compensate for a dysfunctional(More)
Several network properties have been identified as determinants of the stability and complexity of mutualistic networks. However, it is unclear which mechanisms give rise to these network properties. Phenology seems important, because it shapes the topology of mutualistic networks, but its effects on the dynamics of mutualistic networks have scarcely been(More)
Resource competition theory predicts that, in equilibrium, the number of coexisting species cannot exceed the number of limiting resources. In some competition models, however, competitive interactions may result in nonequilibrium dynamics, allowing the coexistence of many species on few resources. The relevance of these findings is still unclear, since(More)
Phenology is a crucial life history trait for species interactions and it can have great repercussions on the persistence of communities and ecosystems. Changes in phenology caused by climate change can disrupt species interactions causing decreases in consumer growth rates, as suggested by the match–mismatch hypothesis (MMH). However, it is still not clear(More)
Plant–soil feedbacks can have important implications for the interactions among plants. Understanding these effects is a major challenge since it is inherently difficult to measure and manipulate highly diverse soil communities. Mathematical models may advance this understanding by making the interplay of the various processes affecting plant–soil(More)
Two models are made to account for the dynamics of a consumer-resource system in which the consumers are divided into juveniles and adults. The resource grows logistically and a type II functional response is assumed for consumers. Resource levels determine fecundity and maturation rates in one model, and mortality rates in the other. The analysis of the(More)
In this work, a simple Lotka-Volterra model of intraguild predation with three species is analysed, searching for the effect of the top predator on the coexistence with its prey-competitor species. Apart from the well-known result that the intraguild prey must be superior in the competition for the shared prey in order to make coexistence possible, the(More)
Life table data of Rhodnius prolixus (Heteroptera: Reduviidae) kept at laboratory conditions were analysed in search for mortality patterns. Gompertz and Weibull mortality models seem adequate to explain the sigmoid shape of the survivorship curve. A significant fit was obtained with both models for females (R(2) = 0.70, P < 0.0005 for the Gompertz model;(More)
177 Cross-kingdom interactions matter: fungal-mediated interactions structure an insect community on oak Ayco J. M. Tack, Sofia Gripenberg & Tomas Roslin 186 Genetic influence on disease spread following arrival of infected carriers Simon Fellous, Alison B. Duncan, Elsa Quillery, Pedro F. Vale & Oliver Kaltz 193 Intralocus sexual conflict and offspring sex(More)
Plant-pollinator interactions are among the best known and ubiquitous plant-animal mutualisms and are crucial for ecosystem functioning and the maintenance of biodiversity. Most pollinators are insects with several life-stages (e.g. egg, larva, pupa, adult) and the mutualistic interaction depends on the pollinator surviving these different life-stages.(More)