Learn More
We provide evidence for anisotropic diffusion in rat corpus callosum and hippocampus. The preferential diffusion pathway in corpus callosum is along the myelinated axon fibres; in the hippocampus diffusion is easier along the transversal axis (x) than along the sagittal (y) or vertical (z) axes. In all areas studied, i.e. in the cortex, corpus callosum and(More)
Changes in brain extracellular space (ECS) volume, composition, and geometry are a consequence of neuronal activity, of glial K+, pH, and amino acid homeostasis, and of changes in glial cell morphology, proliferation, and function. They occur as a result of repetitive neuronal activity, seizures, anoxia, injury, inflammation, and many other pathological(More)
Eukaryotic cells critically depend on the correct regulation of intracellular vesicular trafficking to transport biological material. The Rab subfamily of small guanosine triphosphatases controls these processes by acting as a molecular on/off switch. To fulfill their function, active Rab proteins need to localize to intracellular membranes via(More)
Glial fibrillary acidic protein (GFAP) is the main component of intermediate filaments in astrocytes. To assess its function in astrocyte swelling, we compared astrocyte membrane properties and swelling in spinal cord slices of 8- to 10-day-old wild-type control (GFAP(+/+)) and GFAP-knockout (GFAP(-/-)) mice. Membrane currents and K(+) accumulation around(More)
Diffusion parameters of the extracellular space (ECS) are changed in many brain pathologies, disturbing synaptic as well as extrasynaptic "volume" transmission, which is based on the diffusion of neuroactive substances in the ECS. Amyloid deposition, neuronal loss, and disturbed synaptic transmission are considered to be the main causes of Alzheimer's(More)
The extracellular space (ECS) is the microenvironment of the nerve cells and an important communication channel, allowing for long-distance extrasynaptic communication between cells. Changes in ECS size, geometry, and composition have been reported in diverse (patho)physiological states, including aging. In the present study, real-time tetramethylammonium(More)
Changes in extracellular space (ECS) diffusion parameters, DC potentials and extracellular potassium concentration were studied during single and repeated cortical spreading depressions (SD) in 13-15 (P13-15), 21 (P21) and 90-day-old (adult) Wistar rats. The real-time iontophoretic method using tetramethylammonium (TMA+)-selective microelectrodes was(More)
Volume transmission in the brain is mediated by the diffusion of neurotransmitters, modulators and other neuroactive substances in the extracellular space. The effects of nitric oxide synthase inhibition on extracellular space diffusion properties were studied using two different approaches, the histological dextran method and the real-time iontophoretic(More)
Fetal neocortex or tectum transplanted to the midbrain or cortex of newborn rats develops various degrees of gliosis, i.e. increased numbers of hypertrophied, glial fibrillary acidic protein-positive astrocytes. In addition, there were patches or bundles of myelinated fibres positive for the oligodendrocyte and central myelin marker Rip, and increased(More)