Learn More
The origin of orientation selectivity in visual cortical responses is a central problem for understanding cerebral cortical circuitry. In cats, many experiments suggest that orientation selectivity arises from the arrangement of lateral geniculate nucleus (LGN) afferents to layer 4 simple cells. However, this explanation is not sufficient to account for the(More)
To understand the interspike interval (ISI) variability displayed by visual cortical neurons (Softky & Koch, 1993), it is critical to examine the dynamics of their neuronal integration, as well as the variability in their synaptic input current. Most previous models have focused on the latter factor. We match a simple integrate-and-fire model to the(More)
Many phenomenological models of the responses of simple cells in primary visual cortex have concluded that a cell's firing rate should be given by its input raised to a power greater than one. This is known as an expansive power-law nonlinearity. However, intracellular recordings have shown that a different nonlinearity, a linear-threshold function, appears(More)
Birdsong learning provides an ideal model system for studying temporally complex motor behavior. Guided by the well-characterized functional anatomy of the song system, we have constructed a computational model of the sensorimotor phase of song learning. Our model uses simple Hebbian and reinforcement learning rules and demonstrates the plausibility of a(More)
Adult zebra finch songs consist of stereotyped sequences of syllables. Although some behavioral and physiological data suggest that songs are structured hierarchically, there is also evidence that they are driven by nonhierarchical, clock-like bursting in the premotor nucleus HVC (used as a proper name). In this study, we developed a semiautomated(More)
Understanding the neural mechanisms underlying serially ordered behavior is a fundamental problem in motor learning. We present a computational model of sensorimotor learning in songbirds that is constrained by the known functional anatomy of the song circuit. The model subsumes our companion model for learning individual song "syllables" and relies on the(More)
We develop a new analysis of the lateral geniculate nucleus (LGN) input to a cortical simple cell, demonstrating that this input is the sum of two terms, a linear term and a nonlinear term. In response to a drifting grating, the linear term represents the temporal modulation of input, and the nonlinear term represents the mean input. The nonlinear term,(More)
7 Sniffing out a function for prion proteins Donald A Wilson & Ralph A Nixon  see also p 60 8 Hyperactive interneurons impair learning in a neurofibromatosis model Training restores degraded cortical processing (p 26) Retinitis pigmentosa is characterized by an initial loss of rod photoreceptors followed by a progressive loss of cones, although the known(More)
Recent studies have provided important information concerning the neural signals that subserve vocal learning in songbirds: advanced signal processing techniques are beginning to clarify the behavioral trajectories followed by developing birds; single-unit physiology in behaving animals is providing important clues about sensory and motor representations(More)
Zebra finch song has provided an excellent case study in the neural basis of sequence learning, with a high degree of temporal precision and tight links with precisely timed bursting in forebrain neurons. To examine the development of song timing, we measured the following four aspects of song temporal structure at four age ranges between 65 and 375 days(More)