Todd McNutt

Learn More
We demonstrate the use of highly parallel graphics processing units (GPUs) to accelerate the superposition/convolution (S/C) algorithm to interactive rates while reducing the number of approximations. S/C first transports the incident fluence to compute the total energy released per unit mass (TERMA) grid. Dose is then calculated by superimposing the dose(More)
The purpose of this work is to demonstrate a proof of feasibility of the application of a commercial prototype deformable model algorithm to the problem of delineation of anatomic structures on four-dimensional (4D) computed tomography (CT) image data sets. We acquired a 4D CT image data set of a patient's thorax that consisted of three-dimensional (3D)(More)
PURPOSE Intensity modulated radiation therapy (IMRT) treatment plan quality depends on the planner's level of experience and the amount of time the planner invests in developing the plan. Planners often unwittingly accept plans when further sparing of the organs at risk (OARs) is possible. The authors propose a method of IMRT treatment plan quality control(More)
PURPOSE To develop a model to assess the quality of an IMRT treatment plan using data of prior patients with pancreatic adenocarcinoma. METHODS The dose to an organ at risk (OAR) depends in large part on its orientation and distance to the planning target volume (PTV). A database of 33 previously treated patients with pancreatic cancer was queried to find(More)
In this paper we address the challenge of matching patient geometry to facilitate the design of patient treatment plans in radiotherapy. To this end we propose a novel shape descriptor, the Overlap Volume Histogram, which provides a rotation and translation invariant representation of a patient's organs at risk relative to the tumor volume. Using our(More)
The C57BL/6J laboratory mouse is commonly used in neurobiological research. Digital atlases of the C57BL/6J brain have been used for visualization, genetic phenotyping and morphometry, but currently lack the ability to accurately calculate deviations between individual mice. We developed a fully three-dimensional digital atlas of the C57BL/6J brain based on(More)
PURPOSE To investigate whether an overlap volume histogram (OVH)-driven planning application using an intensity-modulated radiation therapy (IMRT) database can guide and automate volumetric-modulated arc therapy (VMAT) planning for head-and-neck cancer. METHODS Based on comparable head-and-neck dosimetric results between planner-generated VMAT and IMRT(More)
PURPOSE We describe a computerized (or virtual) model of a stereotactic head frame to enable planning prior to the day of radiosurgery. The location of the virtual frame acts as a guide to frame placement on the day of the procedure. METHODS AND MATERIALS The software consists of a triangular mesh representation of the essential frame hardware that can be(More)
PURPOSE/OBJECTIVES The complex planning and quality assurance required for spine SBRT are a barrier to implementation in time-sensitive or limited resource clinical situations. We developed and validated an automated inverse planning algorithm designed to streamline planning and allow rapid delivery of conformal single fraction spine SBRT using widely(More)