Learn More
The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned(More)
We describe a program, tRNAscan-SE, which identifies 99-100% of transfer RNA genes in DNA sequence while giving less than one false positive per 15 gigabases. Two previously described tRNA detection programs are used as fast, first-pass prefilters to identify candidate tRNAs, which are then analyzed by a highly selective tRNA covariance model. This work(More)
Transfer RNAs (tRNAs) and small nucleolar RNAs (snoRNAs) are two of the largest classes of non-protein-coding RNAs. Conventional gene finders that detect protein-coding genes do not find tRNA and snoRNA genes because they lack the codon structure and statistical signatures of protein-coding genes. Previously, we developed tRNAscan-SE, snoscan and snoGPS for(More)
We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about(More)
BACKGROUND Haloferax volcanii is an easily culturable moderate halophile that grows on simple defined media, is readily transformable, and has a relatively stable genome. This, in combination with its biochemical and genetic tractability, has made Hfx. volcanii a key model organism, not only for the study of halophilicity, but also for archaeal biology in(More)
In eukaryotes, dozens of posttranscriptional modifications are directed to specific nucleotides in ribosomal RNAs (rRNAs) by small nucleolar RNAs (snoRNAs). We identified homologs of snoRNA genes in both branches of the Archaea. Eighteen small sno-like RNAs (sRNAs) were cloned from the archaeon Sulfolobus acidocaldarius by coimmunoprecipitation with(More)
BACKGROUND As in eukaryotes, precursor transfer RNAs in Archaea often contain introns that are removed in tRNA maturation. Two unrelated archaeal species display unique pre-tRNA processing complexity in the form of split tRNA genes, in which two to three segments of tRNAs are transcribed from different loci, then trans-spliced to form a mature tRNA. Another(More)
Transfer RNAs (tRNAs) represent the single largest, best-understood class of non-protein coding RNA genes found in all living organisms. By far, the major source of new tRNAs is computational identification of genes within newly sequenced genomes. To organize the rapidly growing collection and enable systematic analyses, we created the Genomic tRNA Database(More)
Classical approaches to determine structures of noncoding RNA (ncRNA) probed only one RNA at a time with enzymes and chemicals, using gel electrophoresis to identify reactive positions. To accelerate RNA structure inference, we developed fragmentation sequencing (FragSeq), a high-throughput RNA structure probing method that uses high-throughput RNA(More)