Todd H. Weisgraber

Learn More
The mechanical properties of ordinary materials degrade substantially with reduced density because their structural elements bend under applied load. We report a class of microarchitected materials that maintain a nearly constant stiffness per unit mass density, even at ultralow density. This performance derives from a network of nearly isotropic microscale(More)
The rapid manufacture of complex three-dimensional micro-scale components has eluded researchers for decades. Several additive manufacturing options have been limited by either speed or the ability to fabricate true three-dimensional structures. Projection micro-stereolithography (PμSL) is a low cost, high throughput additive fabrication technique capable(More)
We study the cyclic dynamics of a single polymer tethered to a hard wall in shear flow using Brownian dynamics, the lattice Boltzmann method, and a recent stochastic event-driven molecular dynamics algorithm. We focus on the dynamics of the free end (last bead) of the tethered chain and we examine the cross-correlation function and power spectral density of(More)
A conservative lattice-Boltzmann method is presented for solving the time-dependent Navier-Stokes equations at low Mach numbers on lattices that are adaptively refined in space and time. A method for coupling the interfaces between grids at different resolutions was constructed following techniques established for finite-volume computational fluid dynamics(More)
3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable(More)
The Acknowledgements section in this Article is incomplete. " We would like to sincerely thank Dr. Jim Schneider of National Security Campus, MO (formerly Kansas City Plant) for giving us access to the results of their load retention study on the stochastic foam material. should read: " We would like to sincerely thank Dr. Jim Schneider of National Security(More)
  • 1