Learn More
We have previously demonstrated that hexanoyl-D-erythro-sphingosine (C(6)-ceramide), an anti-mitogenic cell-permeable lipid metabolite, limited vascular smooth muscle growth by abrogating trauma-induced Akt activity in a stretch injury model of neointimal hyperplasia. Furthermore, ceramide selectively and directly activated protein kinase C zeta (PKC zeta)(More)
Atg9 is a transmembrane protein essential for autophagy which cycles between the Golgi network, late endosomes and LC3-positive autophagosomes in mammalian cells during starvation through a mechanism that is dependent on ULK1 and requires the activity of the class III phosphatidylinositol-3-kinase (PI3KC3). In this study, we demonstrate that the(More)
NK-cell leukemia is a clonal expansion of NK cells. The illness can occur in an aggressive or chronic form. We studied cell lines from human and rat NK-cell leukemias (aggressive NK-cell leukemia) as well as samples from patients with chronic NK-cell leukemia to investigate pathogenic mechanisms. Here we report that Mcl-1 was overexpressed in leukemic NK(More)
The mammalian target of rapamycin (mTOR) assembles into two distinct multiprotein complexes known as mTORC1 and mTORC2. Of the two complexes, mTORC1 acts to integrate a variety of positive and negative signals to downstream targets that regulate cell growth. The lipid second messenger, phosphatidic acid (PA), represents one positive input to mTORC1, and it(More)
Alterations in lipid metabolism may contribute to diabetic complications. Sphingolipids are essential components of cell membranes and have essential roles in homeostasis and in the initiation and progression of disease. However, the role of sphingolipids in type 1 diabetes remains largely unexplored. Therefore, we sought to quantify sphingolipid(More)
Altered sphingolipid metabolism contributes to cancer progression and presents an exploitable target for the development of novel chemotherapeutics. Bioactive sphingolipid metabolites also have the potential to serve as vital biomarkers for cancer and be utilized to determine disease progression, as well as guide therapeutic regimens. Moreover,(More)
Toll-like receptor 4 (TLR4) is a component of the innate immune system that recognizes a diverse group of molecular structures, such as lipopolysaccharide (LPS) from Gram-negative bacteria. TLR4 signaling ultimately leads to activation of the transcription factor, nuclear factor κB (NF-κB), and the production of cytokines. Ceramide is a bioactive(More)
Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each(More)
Several studies have demonstrated that sphingosine kinase 1 (SphK1) translocates to the plasma membrane (PM) upon its activation and further suggested the plasma membrane lipid raft microdomain (PMLRM) as a target for SphK1 relocalization. To date, however, direct evidence of SphK1 localization to the PMLRM has been lacking. In this report, using multiple(More)
The era of sphingolipid-based therapeutics is upon us. A large body of work has been accumulating that demonstrates the distinct biological roles of sphingolipids in maintaining a homeostatic environment and in responding to environmental stimuli to regulate cellular processes. It is thus necessary to further investigate alterations in(More)