Learn More
We have previously demonstrated that hexanoyl-D-erythro-sphingosine (C(6)-ceramide), an anti-mitogenic cell-permeable lipid metabolite, limited vascular smooth muscle growth by abrogating trauma-induced Akt activity in a stretch injury model of neointimal hyperplasia. Furthermore, ceramide selectively and directly activated protein kinase C zeta (PKC zeta)(More)
Atg9 is a transmembrane protein essential for autophagy which cycles between the Golgi network, late endosomes and LC3-positive autophagosomes in mammalian cells during starvation through a mechanism that is dependent on ULK1 and requires the activity of the class III phosphatidylinositol-3-kinase (PI3KC3). In this study, we demonstrate that the(More)
The objective of our study was to determine the mechanism of action of the short-chain ceramide analog, C6-ceramide, and the breast cancer drug, tamoxifen, which we show coactively depress viability and induce apoptosis in human acute myelogenous leukemia cells. Exposure to the C6-ceramide-tamoxifen combination elicited decreases in mitochondrial membrane(More)
Neurotensin receptor-1 (NTSR-1) is a G-protein coupled receptor (GPCR) that has been recently identified as a mediator of cancer progression. NTSR-1 and its endogenous ligand, neurotensin (NTS), are co-expressed in several breast cancer cell lines and breast cancer tumor samples. Based on our previously published study demonstrating that intact structured(More)
The mammalian target of rapamycin (mTOR) assembles into two distinct multiprotein complexes known as mTORC1 and mTORC2. Of the two complexes, mTORC1 acts to integrate a variety of positive and negative signals to downstream targets that regulate cell growth. The lipid second messenger, phosphatidic acid (PA), represents one positive input to mTORC1, and it(More)
Dysregulated sphingolipid metabolism causes neuronal cell death and is associated with insulin resistance and diseases. Thus, we hypothesized that diabetes-induced changes in retinal sphingolipid metabolism may contribute to neuronal pathologies in diabetic retinopathy. ESI-MS/MS was used to measure ceramide content and ceramide metabolites in whole retinas(More)
Altered sphingolipid metabolism contributes to cancer progression and presents an exploitable target for the development of novel chemotherapeutics. Bioactive sphingolipid metabolites also have the potential to serve as vital biomarkers for cancer and be utilized to determine disease progression, as well as guide therapeutic regimens. Moreover,(More)
The bioactive sphingolipid, ceramide 1-phosphate (C-1-P), has been implicated as an extracellular chemotactic agent directing cellular migration in hematopoietic stem/progenitor cells and macrophages. However, interacting proteins that could mediate these actions of C-1-P have, thus far, eluded identification. We have now identified and characterized(More)
Alterations in lipid metabolism may contribute to diabetic complications. Sphingolipids are essential components of cell membranes and have essential roles in homeostasis and in the initiation and progression of disease. However, the role of sphingolipids in type 1 diabetes remains largely unexplored. Therefore, we sought to quantify sphingolipid(More)
NK-cell leukemia is a clonal expansion of NK cells. The illness can occur in an aggressive or chronic form. We studied cell lines from human and rat NK-cell leukemias (aggressive NK-cell leukemia) as well as samples from patients with chronic NK-cell leukemia to investigate pathogenic mechanisms. Here we report that Mcl-1 was overexpressed in leukemic NK(More)