Learn More
Analogous to learning and memory storage, long-term potentiation (LTP) is divided into induction and maintenance phases. Testing the hypothesis that the mechanism of LTP maintenance stores information requires reversing this mechanism in vivo and finding out whether long-term stored information is lost. This was not previously possible. Recently however,(More)
Although the maintenance mechanism of late long-term potentiation (LTP) is critical for the storage of long-term memory, the expression mechanism of synaptic enhancement during late-LTP is unknown. The autonomously active protein kinase C isoform, protein kinase Mzeta (PKMzeta), is a core molecule maintaining late-LTP. Here we show that PKMzeta maintains(More)
The maintenance of long-term memory in hippocampus, neocortex and amygdala requires the persistent action of the atypical protein kinase C isoform, protein kinase Mzeta (PKMzeta). We found that inactivating PKMzeta in the amygdala impaired fear memory in rats and that the extent of the impairment was positively correlated with a decrease in postsynaptic(More)
The persistent activity of protein kinase Mzeta (PKMzeta) maintains synaptic long-term potentiation (LTP) and spatial memory, but the interactions between PKMzeta and the other protein kinases implicated in synaptic plasticity are unknown. During LTP, PKMzeta is rapidly synthesized from a PKMzeta mRNA that encodes a protein kinase Czeta (PKCzeta) catalytic(More)
How long-term memories are stored is a fundamental question in neuroscience. The first molecular mechanism for long-term memory storage in the brain was recently identified as the persistent action of protein kinase Mzeta (PKMzeta), an autonomously active atypical protein kinase C (PKC) isoform critical for the maintenance of long-term potentiation (LTP).(More)
Long-term potentiation (LTP) and long-term depression (LTD) are persistent modifications of synaptic strength that have been implicated in learning, memory, and neuronal development. Despite their opposing effects, both forms of plasticity can be triggered by the activation of NMDA receptors. One mechanism proposed for this bidirectional response is that(More)
The maintenance of long-term potentiation (LTP) in the CA1 region of the hippocampus has been reported to require both a persistent increase in phosphorylation and the synthesis of new proteins. The increased activity of protein kinase C (PKC) during the maintenance phase of LTP may result from the formation of PKMzeta, the constitutively active fragment of(More)
Long-term potentiation (LTP) and long-term depression (LTD) are persistent modifications of synaptic efficacy that may contribute to information storage in the CA1 region of the hippocampus. Persistently enhanced phosphorylation has been implicated in the maintenance phase of LTP. This hypothesis is supported by our previous observation that protein kinase(More)
The defensive tail-withdrawal reflex of Aplysia californica, mediated by identified sensory neurons in pleural ganglia that form synapses on motor cells in pedal ganglia, can be sensitized by stimulating the animal with electric shock. The neurophysiological basis of this simple form of learning is thought to be the increased release of transmitter by the(More)