Tobin J Marks

Learn More
Structural and electronic criteria for ambient stability in n-type organic materials for organic field-effect transistors (OFETs) are investigated by systematically varying LUMO energetics and molecular substituents of arylene diimide-based materials. Six OFETs on n+-Si/SiO2 substrates exhibit OFET response parameters as follows:(More)
Organolanthanides are highly efficient catalysts for inter- and intramolecular hydroamination of various C-C unsaturations such as alkenes, alkynes, allenes, and dienes. Attractive features of organolanthanide catalysts include very high turnover frequencies and excellent stereoselectivities, rendering this methodology applicable to concise synthesis of(More)
We evaluate practical power conversion efficiency limits lim in bulk-heterojunction organic photovoltaic BHJ OPV cells and how the field dependence of exciton dissociation affects cell efficiencies. We treat the fill factor limit as a function of the donor-acceptor lowest unoccupied molecular orbital offset energy ELLO , calculating how this limit varies(More)
Hole transporting materials are widely used in multilayer organic and polymer light-emitting diodes (OLEDs, PLEDs, respectively) and are indispensable if device electroluminescent response and durability are to be truly optimized. This contribution analyzes the relative effects of tin-doped indium oxide (ITO) anode-hole transporting layer (HTL) contact(More)
With advances in exfoliation and synthetic techniques, atomically thin films of semiconducting transition metal dichalcogenides have recently been isolated and characterized. Their two-dimensional structure, coupled with a direct band gap in the visible portion of the electromagnetic spectrum, suggests suitability for digital electronics and(More)
The development of large-area, low-cost electronics for flat-panel displays, sensor arrays, and flexible circuitry depends heavily on high-throughput fabrication processes and a choice of materials with appropriate performance characteristics. For different applications, high charge carrier mobility, high electrical conductivity, large dielectric constants,(More)
The p-n junction diode and field-effect transistor are the two most ubiquitous building blocks of modern electronics and optoelectronics. In recent years, the emergence of reduced dimensionality materials has suggested that these components can be scaled down to atomic thicknesses. Although high-performance field-effect devices have been achieved from(More)
Single-walled carbon nanotube (SWNT) films on flexible PET (polyethyleneterephthalate) substrates are used as transparent, flexible anodes for organic light-emitting diodes (OLEDs). For polymer-based OLEDs having the structure: SWNT/PEDOT-PSS:MeOH/TFB (poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine)) + TPD-Si(2)(More)
This contribution details the synthesis and chemical/physical characterization of a series of unconventional twisted pi-electron system electro-optic (EO) chromophores. Crystallographic analysis of these chromophores reveals large ring-ring dihedral twist angles (80-89 degrees) and a highly charge-separated zwitterionic structure dominating the ground(More)
Nanoscopically confined polymer films are known to exhibit substantially depressed glass transition temperatures (Lg's) as compared to the corresponding bulk materials. We report here that pentacene thin films grown on polymer gate dielectrics at temperatures well below their bulk Tg's exhibit distinctive and abrupt morphological and microstructural(More)