Learn More
Isoforms of the casein kinase 1 (CK1) family have been shown to phosphorylate key regulatory molecules involved in cell cycle, transcription and translation, the structure of the cytoskeleton, cell-cell adhesion and receptor-coupled signal transduction. They regulate key signaling pathways known to be critically involved in tumor progression. Recent results(More)
MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients. We(More)
In melanoma, the PI3K-AKT-mTOR (AKT) and RAF-MEK-ERK (MAPK) signaling pathways are constitutively activated and appear to play a role in chemoresistance. Herein, we investigated the effects of pharmacological AKT and MAPK pathway inhibitors on chemosensitivity of melanoma cells to cisplatin and temozolomide. Chemosensitivity was tested by examining effects(More)
The RAS-RAF-MEK-ERK and PI3K-AKT-mTOR signaling pathways are activated through multiple mechanisms and appear to play a major role in melanoma progression. Herein, we examined whether targeting the RAS-RAF-MEK-ERK pathway with the RAF inhibitor sorafenib and/or the PI3K-AKT-mTOR pathway with the mTOR inhibitor rapamycin has therapeutic effects against(More)
Casein kinase 1 alpha (CK1alpha) is a multifunctional Ser/Thr kinase that phosphorylates several substrates. Among those is beta-catenin, an important player in cell adhesion and Wnt signaling. Phosphorylation of beta-catenin by CK1alpha at Ser45 is the priming reaction for the proteasomal degradation of beta-catenin. Interestingly, aside from this role in(More)
Brain metastases are the most common cause of death in patients with metastatic melanoma, and the RAF-MEK-ERK and PI3K-AKT signaling pathways are key players in melanoma progression and drug resistance. The BRAF inhibitor vemurafenib significantly improved overall survival. However, brain metastases still limit the effectiveness of this therapy. In a series(More)
Dermcidin (DCD) is an antimicrobial peptide which is constitutively expressed in eccrine sweat glands. By postsecretory proteolytic processing in sweat, the DCD protein gives rise to anionic and cationic DCD peptides with a broad spectrum of antimicrobial activity. Many antimicrobial peptides induce membrane permeabilization as part of their killing(More)
Farnesyl transferase inhibitors (FTIs) inhibit the farnesylation of proteins, including RAS and RHEB (Ras homolog enriched in brain). RAS signals to the RAF-MEK-ERK (MAPK) and PI3K-AKT-mTOR (AKT) signaling pathways, which have a major role in melanoma progression. RHEB positively regulates mammalian target of rapamycin (mTOR). We investigated the effects of(More)
Beta-catenin plays an important role in embryogenesis and carcinogenesis by controlling either cadherin-mediated cell adhesion or transcriptional activation of target gene expression. In many types of cancers nuclear translocation of beta-catenin has been observed. Our data indicate that during melanoma progression an increased dependency on the(More)
The V600E mutation in the kinase BRAF is frequently detected in melanomas and results in constitutive activation of BRAF, which then promotes cell proliferation by the mitogen-activated protein kinase signaling pathway. Although the BRAFV600E kinase inhibitor vemurafenib has remarkable antitumor activity in patients with BRAFV600E-mutated melanoma, its(More)