Tobias U. Schülli

Learn More
We compare elastic relaxation and Si-Ge distribution in epitaxial islands grown on both pit-patterned and flat Si(001) substrates. Anomalous x-ray diffraction yields that nucleation in the pits provides a higher relaxation. Using an innovative, model-free fitting procedure based on self-consistent solutions of the elastic problem, we provide compositional(More)
Grazing-incidence X-ray diffraction measurements on single GaAs nanowires (NWs) grown on a (111)-oriented GaAs substrate by molecular beam epitaxy are reported. The positions of the NWs are intentionally determined by a direct implantation of Au with focused ion beams. This controlled arrangement in combination with a nanofocused X-ray beam allows the(More)
The phenomenon of supercooling in metals-that is, the preservation of a disordered, fluid phase in a metastable state well below the melting point-has led to speculation that local atomic structure configurations of dense, symmetric, but non-periodic packing act as the main barrier for crystal nucleation. For liquids in contact with solids, crystalline(More)
Three-dimensional reciprocal-space maps of a single SiGe island around the Si(004) Bragg peak are recorded using an energy-tuning technique with a microfocused X-ray beam with compound refractive lenses as focusing optics. The map is in agreement with simulated data as well as with a map recorded by an ordinary rocking-curve scan. The energy-tuning approach(More)
Structure-activity relationships in heterogeneous catalysis are challenging to be measured on a single-particle level. For the first time, one X-ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm-resolved X-ray diffraction (μ-XRD) and X-ray excited optical fluorescence (μ-XEOF)(More)
Physics Ages 13-18 One of nature's strange phenomena is that, for some substances, the melting point is not always the same as the freezing point. In this article, Tobias Schülli leads us into the world of condensed matter; he introduces the differences between the states of matter , and provides an explanation of this apparent anomaly: supercooling. The(More)
X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques(More)
Large-wave-vector phonons have an important role in determining the thermal and electronic properties of nanoscale materials. The small volumes of such structures, however, have posed significant challenges to experimental studies of the phonon dispersion. We show that synchrotron x-ray thermal diffuse scattering can be adapted to probe phonons with wave(More)
  • 1