Tobias U. Schülli

Learn More
We compare elastic relaxation and Si-Ge distribution in epitaxial islands grown on both pit-patterned and flat Si(001) substrates. Anomalous x-ray diffraction yields that nucleation in the pits provides a higher relaxation. Using an innovative, model-free fitting procedure based on self-consistent solutions of the elastic problem, we provide compositional(More)
O N Devices exploiting individual quantum states of electrons promise to extend dramatically the capabilities of silicon integrated electronics. One route to forming such devices is via coup led electrostatically defi ned quantum dots in which electrons are confi ned in a thin strained Si layer on SiGe. [ 1 , 2 ] The unique advantage of forming such quantum(More)
Large-wave-vector phonons have an important role in determining the thermal and electronic properties of nanoscale materials. The small volumes of such structures, however, have posed significant challenges to experimental studies of the phonon dispersion. We show that synchrotron x-ray thermal diffuse scattering can be adapted to probe phonons with wave(More)
The phenomenon of supercooling in metals-that is, the preservation of a disordered, fluid phase in a metastable state well below the melting point-has led to speculation that local atomic structure configurations of dense, symmetric, but non-periodic packing act as the main barrier for crystal nucleation. For liquids in contact with solids, crystalline(More)
Anomalous x-ray scattering is employed for quantitative measurements of the Ge composition profile in islands on Si(001). The anomalous effect in SiGe is enhanced exploiting the dependence of the complex atomic form factors on the momentum transfer. Comparing the intensity ratios for x-ray energies below and close to the K edge of Ge at various Bragg(More)
We present the results of the study of the correlation between the electrical and structural properties of individual GaAs nanowires measured in their as-grown geometry. The resistance and the effective charge carrier mobility were extracted for several nanowires, and subsequently, the same nano-objects were investigated using X-ray nanodiffraction. This(More)
Interfaces between polarity domains in nitride semiconductors, the so-called Inversion Domain Boundaries (IDB), have been widely described, both theoretically and experimentally, as perfect interfaces (without dislocations and vacancies). Although ideal planar IDBs are well documented, the understanding of their configurations and interactions inside(More)
Advanced semiconductor heterostructures are at the very heart of many modern technologies, including aggressively scaled complementary metal oxide semiconductor transistors for high performance computing and laser diodes for low power solid state lighting applications. The control of structural and compositional homogeneity of these semiconductor(More)
We study the growth and relaxation processes of Ge crystals selectively grown by chemical vapour deposition on free-standing 90 nm wide Si(001) nanopillars. Epi-Ge with thickness ranging from 4 to 80 nm was characterized by synchrotron based x-ray diffraction and transmission electron microscopy. We found that the strain in Ge nanostructures is plastically(More)