Learn More
In recent years, three attentional networks have been defined in anatomical and functional terms. These functions involve alerting, orienting, and executive attention. Reaction time measures can be used to quantify the processing efficiency within each of these three networks. The Attention Network Test (ANT) is designed to evaluate alerting, orienting, and(More)
Prevailing theories of implicit or unaware learning propose a developmental invariance model, with implicit function maturing early in infancy or childhood despite prolonged improvements in explicit or intentional learning and memory systems across childhood. Neuroimaging studies of adult visuomotor sequence learning have associated fronto-striatal brain(More)
Midbrain dopaminergic neurons projecting to the ventral striatum code for reward magnitude and probability during reward anticipation and then indicate the difference between actual and predicted outcome. It has been questioned whether such a common system for the prediction and evaluation of reward exists in humans. Using functional magnetic resonance(More)
Brain imaging data have repeatedly shown that the anterior cingulate cortex is an important node in the brain network mediating conflict. We previously reported that polymorphisms in dopamine receptor (DRD4) and monoamine oxidase A (MAOA) genes showed significant associations with efficiency of handling conflict as measured by reaction time differences in(More)
BACKGROUND Current efforts to study the genetic underpinnings of higher brain functions have been lacking appropriate phenotypes to describe cognition. One of the problems is that many cognitive concepts for which there is a single word (e.g. attention) have been shown to be related to several anatomical networks. Recently, we have developed an Attention(More)
Reward processing depends on dopaminergic neurotransmission and is modulated by factors affecting dopamine (DA) reuptake and degradation. We used fMRI and a guessing task sensitive to reward-related activation in the prefrontal cortex and ventral striatum to study how individual variation in genes contributing to DA reuptake [DA transporter (DAT)] and(More)
Perceptual load of an attended task influences the processing of irrelevant background stimuli. In a series of behavioral, functional magnetic resonance (fMRI) and electroencephalography (EEG) experiments we examined the influence of working memory (WM) load related to a relevant visual stimulus on the processing of irrelevant backgrounds. We further(More)
Events are stored in our episodic memory in varying degrees of accessibility for conscious retrieval and combined with varying amounts of associated information. A crucial aspect of episodic memory is to bind information together, e.g. linking an object to a certain location. Spontaneous or experimenter-induced variance in the allocation of attentional(More)
RATIONALE The subjective perception of dyspnea, which is an impairing symptom in various cardiopulmonary diseases, consists of sensory (intensity) and affective aspects (unpleasantness). However, little is known about the cortical processing of the perception of dyspnea. OBJECTIVES To investigate the cortical areas associated with the processing of the(More)
As shown in non-human primate and human fMRI studies the probability and magnitude of anticipated rewards modulate activity in the mesolimbic dopaminergic system. Importantly, non-human primate data have revealed that single dopaminergic neurons code for both probability and magnitude of expected reward, suggesting an identical system. Using a guessing task(More)