Learn More
BACKGROUND Plants achieve remarkable plasticity in shoot system architecture by regulating the activity of secondary shoot meristems, laid down in the axil of each leaf. Axillary meristem activity, and hence shoot branching, is regulated by a network of interacting hormonal signals that move through the plant. Among these, auxin, moving down the plant in(More)
Brassinosteroids (BRs) are steroid hormones that are essential for the development of plants. A tight control of BR homeostasis is vital for modulating their impact on growth responses. Although it is recognized that the rapid adaptation of de novo synthesis has a key role in adjusting required BR levels, our knowledge of the mechanisms governing feedback(More)
The auxin efflux carrier EIR1 (also known as AGR and AtPIN2) is a key mediator of the response of Arabidopsis roots to gravity [1,2]. This response is thought to require the establishment of a transient auxin gradient in the root meristem, resulting in differential cell elongation [3]. Recent reports suggest that EIR1 is essential for the asymmetric(More)
Plants generate cells and organs throughout their life cycle. Plant cell proliferation relates to the activity of dividing meristematic cells, which subsequently differentiate in a position- and lineage-dependent manner. The events underlying the regulation of cell division and further differentiation processes are under tight control of both intrinsic and(More)
Plant GSK-3/Shaggy-like kinases are key players in brassinosteroid (BR) signalling which impact on plant development and participate in response to wounding, pathogens and salt stress. Bikinin was previously identified in a chemical genetics screen as an inhibitor targeting these kinases. To dissect the structural elements crucial for inhibition of(More)
Brassinosteroids (BRs) are steroid hormones that are essential for plant growth. Responses to these hormones are mediated by transcription factors of the bri1-EMS suppressor 1/brassinazole resistant 1 subfamily, and BRs activate these factors by impairing their inhibitory phosphorylation by GSK3/shaggy-like kinases. Here we show that BRs induce nuclear(More)
mutant constructs in transgenic plant lines. CES expression was determined in 2-week-old seedlings of the indicated lines and is shown in comparison to wild-type. GAPC2 was used as an internal control. The error bars are the SD calculated of three independent biological repeats each measured in four technical repeats.
  • 1