Learn More
BACKGROUND Epigenetics is defined as heritable changes in gene expression that are not based on changes in the DNA sequence. Posttranslational modification of histone proteins is a major mechanism of epigenetic regulation. The kinase PRK1 (protein kinase C related kinase 1, also known as PKN1) phosphorylates histone H3 at threonine 11 and is involved in the(More)
Protein kinase C Related Kinase 1 (PRK1) has been shown to be involved in the regulation of androgen receptor signaling and has been identified as a novel potential drug target for prostate cancer therapy. Since there is no PRK1 crystal structure available to date, multiple PRK1 homology models were generated in order to address the protein flexibility. An(More)
Sirtuins are a highly conserved class of NAD(+)-dependent lysine deacylases. The human isotype Sirt2 has been implicated in the pathogenesis of cancer, inflammation and neurodegeneration, which makes the modulation of Sirt2 activity a promising strategy for pharmaceutical intervention. A rational basis for the development of optimized Sirt2 inhibitors is(More)
Sirtuins constitute a family of NAD(+)-dependent enzymes that catalyse the cleavage of various acyl groups from the ℇ-amino group of lysines. They regulate a series of cellular processes and their misregulation has been implicated in various diseases, making sirtuins attractive drug targets. To date, only a few sirtuin modulators have been reported that are(More)
amino-group of lysines is an important switch in gene regulation and protein activity and has gained increasing interest in molecular biology and drug discovery in the last decade. One of the enzyme families that catalyze the cleavage of an acetyl group are the NAD+-dependent protein deacetylases, the sirtuins. The human sirtuins have seven members,(More)
  • 1