Learn More
We have used X-ray diffraction on the rhombohedral phospholipid phase to reconstruct stalk structures in different pure lipids and lipid mixtures with unprecedented resolution, enabling a quantitative analysis of geometry, as well as curvature and hydration energies. Electron density isosurfaces are used to study shape and curvature properties of the bent(More)
We have studied the packing and collective dynamics of the phospholipid acyl chains in a model membrane composed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and cholesterol in varied phase state. After a structural characterization of this two-component model bilayer using X-ray reflectivity, we have carried out coherent inelastic neutron(More)
We have developed an X-ray scattering setup which allows to study membrane fusion intermediates or other nonlamellar lipid mesophases by laboratory-scale X-ray sources alone, thus taking advantage of unrestricted beamtime compared to synchrotron sources. We report results of a study of pure lipid bilayers and phospholipid/cholesterol binary mixtures.(More)
We study the nonequilibrium shape fluctuations in fluorescence labeled phospholipid multibilayers composed of the model lipid DOPC and the well-known lipid dye Texas red, driven out of equilibrium by short laser pulses. The temporal evolution of the lipid bilayer undulations after excitation was recorded by time resolved x-ray diffraction. Already at(More)
The spatial coherence of free-electron laser radiation in the water window spectral range was studied, using the third harmonic (λ<(3rd) = 2.66 nm) of DESY's Free-electron LASer in Hamburg (FLASH). Coherent single pulse diffraction patterns of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) multilamellar lipid stacks have been recorded. The intensity(More)
Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase(More)
We have studied the acyl-chain conformation in stalk phases of model membranes by x-ray diffraction from oriented samples. As an equilibrium lipid phase induced by dehydration, the stalk or rhombohedral phase exhibits lipidic passages (stalks) between adjacent bilayers, representing a presumed intermediate state in membrane fusion. From the detailed(More)
The effect of hard X-ray radiation on the structure and electrostatics of solid-supported lipid multilayer membranes is investigated using a scanning Kelvin probe (SKP) integrated with a high-energy synchrotron beamline to enable in situ measurements of the membranes' local Volta potential (V(p)) during X-ray structural characterization. The undulator(More)
We use standing surface acoustic waves to induce coherent phonons in model lipid multilayers deposited on a piezoelectric surface. Probing the structure by phase-controlled stroboscopic x-ray pulses we find that the internal lipid bilayer electron density profile oscillates in response to the externally driven motion of the lipid film. The structural(More)
The technical realisation and the commissioning experiments of a high-speed X-ray detector based on a quadrant avalanche silicon photodiode and high-speed digitizers are described. The development is driven by the need for X-ray detectors dedicated to time-resolved diffraction and imaging experiments, ideally requiring pulse-resolved data processing at the(More)
  • 1