Learn More
BACKGROUND Arm hemiparesis secondary to stroke is common and disabling. We aimed to assess whether robotic training of an affected arm with ARMin--an exoskeleton robot that allows task-specific training in three dimensions-reduces motor impairment more effectively than does conventional therapy. METHODS In a prospective, multicentre, parallel-group(More)
Rehabilitation robots start to become an important tool in stroke rehabilitation. Compared to manual arm training, robot-supported training can be more intensive, of longer duration, repetitive and task-oriented. Therefore, these devices have the potential to improve the rehabilitation process in stroke patients. While in the past, most groups have been(More)
Task-oriented repetitive movements can improve muscle strength and movement co-ordination in patients with impairments due to neurological lesions. The application of robotics and automation technology can serve to assist, enhance, evaluate and document the rehabilitation of movements. The paper provides an overview of existing devices that can support(More)
In the past decade, several arm rehabilitation robots have been developed to assist neurological patients during therapy. Early devices were limited in their number of degrees of freedom and range of motion, whereas newer robots such as the ARMin robot can support the entire arm. Often, these devices are combined with virtual environments to integrate(More)
A new haptic interface device is suggested, which can be used for functional magnetic resonance imaging (fMRI) studies. The basic component of this 1 DOF haptic device are two coils that produce a Lorentz force induced by the large static magnetic field of the MR scanner. A MR-compatible optical angular encoder and a optical force sensor enable the(More)
Task-oriented, repetitive and intensive arm training can enhance arm rehabilitation in patients with paralyzed upper extremities due to lesions of the central nervous system. There is evidence that the training duration is a key factor for the therapy progress. Robot-supported therapy can improve the rehabilitation allowing more intensive training. This(More)
Task-oriented repetitive movements can improve motor recovery in patients with neurological or orthopaedic lesions. The application of robotics can serve to assist, enhance, evaluate, and document neurological and orthopaedic rehabilitation. ARMin II is the second prototype of a robot for arm therapy applicable to the training of activities of daily living.(More)
BACKGROUND Robot-assisted therapy offers a promising approach to neurorehabilitation, particularly for severely to moderately impaired stroke patients. The objective of this study was to investigate the effects of intensive arm training on motor performance in four chronic stroke patients using the robot ARMin II. METHODS ARMin II is an exoskeleton robot(More)
—Early intervention and intensive therapy improve the outcome of neuromuscular rehabilitation. There are indications that where a patient is motivated and premeditates their movement, the recovery is more effective. Therefore, a strategy for patient-cooperative control of rehabilitation devices for upper extremities is proposed and evaluated. The strategy(More)