Learn More
The estimation of amino acid replacement frequencies during molecular evolution is crucial for many applications in sequence analysis. Score matrices for database search programs or phylogenetic analysis rely on such models of protein evolution. Pioneering work was done by Dayhoff et al. (1978) who formulated a Markov model of evolution and derived the(More)
Evolution of proteins is generally modeled as a Markov process acting on each site of the sequence. Replacement frequencies need to be estimated based on sequence alignments. Here we compare three approaches: First, the original method by Dayhoff, Schwartz, and Orcutt (1978) Atlas Protein Seq. Struc. 5:345-352, secondly, the resolvent method (RV) by Müller(More)
The ongoing characterization of novel species creates the need for a molecular marker which can be used for species- and, simultaneously, for mega-systematics. Recently, the use of the internal transcribed spacer 2 (ITS2) sequence was suggested, as it shows a high divergence in sequence with an assumed conservation in structure. This hypothesis was mainly(More)
Given two organisms, how can one distinguish whether they belong to the same species or not? This might be straightforward for two divergent organisms, but can be extremely difficult and laborious for closely related ones. A molecular marker giving a clear distinction would therefore be of immense benefit. The internal transcribed spacer 2 (ITS2) has been(More)
Hepatitis C virus (HCV) infects 3% of the world's population. Treatment of chronic HCV consists of a combination of PEGylated interferon-alpha (PEG-IFN-alpha) and ribavirin (RBV). To identify genetic variants associated with HCV treatment response, we conducted a genome-wide association study of sustained virological response (SVR) to PEG-IFN-alpha/RBV(More)
The internal transcribed spacer 2 (ITS2) of the nuclear ribosomal repeat unit is one of the most commonly applied phylogenetic markers. It is a fast evolving locus, which makes it appropriate for studies at low taxonomic levels, whereas its secondary structure is well conserved, and tree reconstructions are possible at higher taxonomic levels. However,(More)
MOTIVATION With the exponential growth of expression and protein-protein interaction (PPI) data, the frontier of research in systems biology shifts more and more to the integrated analysis of these large datasets. Of particular interest is the identification of functional modules in PPI networks, sharing common cellular function beyond the scope of(More)
BACKGROUND In sequence analysis the multiple alignment builds the fundament of all proceeding analyses. Errors in an alignment could strongly influence all succeeding analyses and therefore could lead to wrong predictions. Hand-crafted and hand-improved alignments are necessary and meanwhile good common practice. For RNA sequences often the primary sequence(More)
Transcription factor binding site (TFBS) detection plays an important role in computational biology, with applications in gene finding and gene regulation. The sites are often modeled by gapless profiles, also known as position-weight matrices. Past research has focused on the significance of profile scores (the ability to avoid false positives), but this(More)
Structural genomics meets phylogenetics and vice versa: Knowing rRNA secondary structures is a prerequisite for constructing rRNA alignments for inferring phylogenies, and inferring phylogenies is a precondition to understand the evolution of such rRNA secondary structures. Here, both scientific worlds go together. The rRNA internal transcribed spacer 2(More)