Tobias E. Schrader

Learn More
Drugs may interact with double stranded DNA via a variety of binding modes, each mode giving rise to a specific pharmacological function. Here we demonstrate the ability of single molecule force spectroscopy to discriminate between different interaction modes by measuring the mechanical properties of DNA and their modulation upon the binding of small(More)
Beta-hairpins constitute the smallest beta-type structures in peptides and proteins. The development of highly stable, yet monomeric beta-hairpins based on the tryptophan zipper motif was therefore a remarkable success [A. G. Cochran, N. J. Skelton, M. A. Starovasnik, Proc. Natl. Acad. Sci USA 2001, 98, 5578-5583]. We have been able to design, synthesize(More)
Heme enzymes activate oxygen through formation of transient iron-oxo (ferryl) intermediates of the heme iron. A long-standing question has been the nature of the iron-oxygen bond and, in particular, the protonation state. We present neutron structures of the ferric derivative of cytochrome c peroxidase and its ferryl intermediate; these allow direct(More)
UV-induced formation of cylcobutane pyrimidine dimers (CPD) in all thymine DNA models have been studied by femtosecond IR spectroscopy. CPDs are shown to form within approximately 1 ps during the decay of the initially excited (1)pi pi * state. The quantum yields phi(D)(ps) determined after the (1)pi pi * decay equal the final yield phi(D)(cw). This gives(More)
The catalytic mechanism of class A β-lactamases is often debated due in part to the large number of amino acids that interact with bound β-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type β-lactamase enzymes is still not well understood after decades of scientific research. To better(More)
Catalytic heme enzymes carry out a wide range of oxidations in biology. They have in common a mechanism that requires formation of highly oxidized ferryl intermediates. It is these ferryl intermediates that provide the catalytic engine to drive the biological activity. Unravelling the nature of the ferryl species is of fundamental and widespread importance.(More)
Femtosecond time-resolved infrared spectroscopy was used to study the formation of cyclobutane dimers in the all-thymine oligodeoxynucleotide (dT)18 by ultraviolet light at 272 nanometers. The appearance of marker bands in the time-resolved spectra indicates that the dimers are fully formed approximately 1 picosecond after ultraviolet excitation. The(More)
A light-switchable peptide is transformed with ultrashort pulses from a beta-hairpin to an unfolded hydrophobic cluster and vice versa. The structural changes are monitored by mid-IR probing. Instantaneous normal mode analysis with a Hamiltonian combining density functional theory with molecular mechanics is used to interpret the absorption transients.(More)
Ultrafast IR spectroscopy is used to monitor the nonequilibrium backbone dynamics of a cyclic peptide in the amide I vibrational range with picosecond time resolution. A conformational change is induced by means of a photoswitch integrated into the peptide backbone. Although the main conformational change of the backbone is completed after only 20 ps, the(More)
Conformational changes in proteins and peptides can be initiated by diverse processes. This raises the question how the variation of initiation mechanisms is connected to differences in folding or unfolding processes. In this work structural dynamics of a photoswitchable β-hairpin model peptide were initiated by two different mechanisms: temperature jump(More)