Tobias C. Owen

Learn More
Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe,(More)
We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is(More)
Deuterium on Mars has been detected by the resolution of several Doppler-shifted lines ofHDO near 3.7 micrometers in the planet's spectrum. The ratio of deuterium to hydrogen is (9 +/- 4) x 10(-4); the abundance of H(2)0 was derived from lines near 1.1 micrometers. This ratio is enriched on Mars over the teiluric value by a factor of6 +/- 3. The enrichment(More)
The 1980 encounter by the Voyager 1 spacecraft with Titan, Saturn's largest moon, revealed the presence of a thick atmosphere containing nitrogen and methane (1.4 and approximately 0.05 bar, respectively). Methane was found to be nearly saturated at Titan's tropopause, which, with other considerations, led to the hypothesis that Titan might experience a(More)
Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is(More)
We are proposing a model for the delivery of volatiles to the inner planets by icy planetesimals (comets). Laboratory studies of the trapping of gases in ice forming at low temperatures simulate the formation of comet nuclei at various distances from the Sun in the solar nebula. The total gas content as well as the relative proportions of gases trapped in(More)
The nucleus of the Jupiter-family comet 19P/Borrelly was closely observed by the Miniature Integrated Camera and Spectrometer aboard the Deep Space 1 spacecraft on 22 September 2001. The 8-kilometer-long body is highly variegated on a scale of 200 meters, exhibiting large albedo variations (0.01 to 0.03) and complex geologic relationships. Short-wavelength(More)
[1] The Cassini‐Huygens probe gas chromatograph mass spectrometer (GCMS) determined the composition of the Titan atmosphere from ∼140 km altitude to the surface. After landing, it returned composition data of gases evaporated from the surface. Height profiles of molecular nitrogen (N2), methane (CH4), and molecular hydrogen (H2) were determined. Traces were(More)
New observations of Titan's near-infrared spectrum (4000-5000 cm-1) combined with points taken from Fink and Larson's (1979) spectrum (4000-12500 cm-1) provide information on Titan's haze, possible clouds, surface albedo, and atmospheric abundance of H2. In the near-infrared, the main features in Titan's spectrum result from absorption of solar radiation(More)
Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(±0.007); argon-40 ((40)Ar), 0.0193(±0.0001); nitrogen (N2), 0.0189(±0.0003); oxygen, 1.45(±0.09) × 10(-3); carbon monoxide, < 1.0 × 10(-3); and (40)Ar/(36)Ar,(More)