Tobi Vaudrey

Learn More
This paper presents a technique for estimating the threedimensional velocity vector field that describes the motion of each visible scene point (scene flow). The technique presented uses two consecutive image pairs from a stereo sequence. The main contribution is to decouple the position and velocity estimation steps, and to estimate dense velocities using(More)
Performance evaluation of stereo or motion analysis techniques is commonly done either on synthetic data where the ground truth can be calculated from ray-tracing principals, or on engineered data where ground truth is easy to estimate. Furthermore, these scenes are usually only shown in a very short sequence of images. This paper shows why synthetic scenes(More)
Building upon recent developments in optical flow and stereo matching estimation, we propose a variational framework for the estimation of stereoscopic scene flow, i.e., the motion of points in the three-dimensional world from stereo image sequences. The proposed algorithm takes into account image pairs from two consecutive times and computes both depth and(More)
This paper discusses the detection of moving objects (being a crucial part of driver assistance systems) using monocular or stereoscopic computer vision. In both cases, object detection is based on motion analysis of individually tracked image points (optical flow), providing a motion metric which corresponds to the likelihood that the tracked point is(More)
Particle filtering of boundary points is a robust way to estimate lanes. This paper introduces a new lane model in correspondence to this particle filterbased approach, which is flexible to detect all kinds of lanes. A modified version of an Euclidean distance transform is applied to an edge map of a road image from a birds-eye view to provide information(More)
Lane detection and tracking is a significant component of vision-based driver assistance systems (DAS). Low-level image processing is the first step in such a component. This paper suggests three useful techniques for low-level image processing in lane detection situations: bird’s-eye view mapping, a specialized edge detection method, and the distance(More)
Lane detection is a significant component of driver assistance systems. Highway-based lane departure warning solutions are in the market since the mid-1990s. However, improving and generalizing vision-based lane detection remains to be a challenging task until recently. Among various lane detection methods developed, strong lane models, based on the global(More)
This paper discusses options for testing correspondence algorithms in stereo or motion analysis that are designed or considered for vision-based driver assistance. It introduces a globally available database, with a main focus on testing on video sequences of real-world data. We suggest the classification of recorded video data into situations defined by a(More)
This paper presents an approach to test stereo algorithms against long stereo sequences (say, 100+ image pairs). Stereo sequences of this length have not been quantitatively evaluated in the past, even though they are the input data of a vision-based driver assistance system. Using stereo sequences allows one to exploit the temporal information, which is,(More)
Intelligent vehicle systems need to distinguish which objects are moving and which are static. A static concrete wall lying in the path of a vehicle should be treated differently than a truck moving in front of the vehicle. This paper proposes a new algorithm that addresses this problem, by providing dense dynamic depth information, while coping with(More)