Tjeerd Olde Scheper

Learn More
A mathematical model for the intracellular circadian rhythm generator has been studied, based on a negative feedback of protein products on the transcription rate of their genes. The study is an attempt at examining minimal but biologically realistic requirements for a negative molecular feedback loop involving considerably faster reactions, to produce(More)
A fundamental question in the field of circadian rhythms concerns the biochemical and molecular nature of the oscillator. There is strong evidence that circadian oscillators are cell autonomous and rely on periodic gene expression. In Drosophila, Neurospora, Aplysia, and vertebrates, circadian oscillators are thought to be based on molecular autoregulatory(More)
Chaos provides many interesting properties that can be used to achieve computational tasks. Such properties are sensitivity to initial conditions, space filling, control and synchronization. Chaotic neural models have been devised to exploit such properties. In this paper, a chaotic spiking neuron model is investigated experimentally. This investigation is(More)
Short Term Plasticity (STP) has been shown to exist extensively in synapses throughout the brain. Its function is more or less clear in the sense that it alters the probability of synaptic transmission at short time scales. However, it is still unclear what effect STP has on the dynamics of neural networks. We show, using a novel dynamic STP model, that(More)