Tiziana DiMatteo

Learn More
Large-scale N-body simulations play an important role in advancing our understanding of the formation and evolution of large structures in the universe. These computations require a large number of particles, in the order of 10-100 of billions, to realistically model phenomena such as the formation of galaxies. Among these particles, black holes play a(More)
Large-scale N-body simulations play an important role in advancing our understanding of the formation and evolution of large structures in the universe. These computations require a large number of particles, in the order of 10-100 of billions, to realistically model phenomena such as the formation of galaxies. Among these particles, black holes play a(More)
In this paper, we study the filamentary structures and the galaxy alignment along filaments at redshift z = 0.06 in the MassiveBlack-II simulation, a state-of-the-art, high-resolution hydrodynamical cosmological simulation which includes stellar and AGN feedback in a volume of (100 Mpc/h) 3. The filaments are constructed using the subspace constrained mean(More)
This thesis presents a theoretical investigation of supermassive black holes and the quasars they power through cosmological hydrodynamic simulations on petascale supercomputers. As the size of simulations increase, visualization and interaction with the data become difficult. We developed interactive visualization software on top of existing image(More)
  • 1