Tivadar Orban

Learn More
Neuronal Ca(2+) sensors (NCS) are high-affinity Ca(2+)-binding proteins critical for regulating a vast range of physiological processes. Guanylate cyclase-activating proteins (GCAPs) are members of the NCS family responsible for activating retinal guanylate cyclases (GCs) at low Ca(2+) concentrations, triggering synthesis of cGMP and recovery of(More)
G protein-coupled receptors (GPCRs) are essential mediators of signal transduction, neurotransmission, ion channel regulation, and other cellular events. GPCRs are activated by diverse stimuli, including light, enzymatic processing of their N-termini, and binding of proteins, peptides, or small molecules such as neurotransmitters. GPCR dysfunction caused by(More)
We have demonstrated that amino acids E (323), Y (324), E (330), and V (331) from the factor Va heavy chain are required for the interaction of the cofactor with factor Xa and optimum rates of prothrombin cleavage. We have also shown that amino acid region 332-336 contains residues that are important for cofactor function. Using overlapping peptides, we(More)
Telomeres are specialized nucleoprotein complexes that comprise the ends of linear chromosomes. Human telomeres end in a short, single-stranded DNA (ssDNA) overhang that is recognized and bound by two telomere proteins, POT1 and TPP1. Whereas POT1 binds directly to telomere ssDNA, its interaction with TPP1 is essential for localization of POT1 to the(More)
The prothrombinase complex catalyzes the activation of prothrombin to alpha-thrombin. We have repetitively shown that amino acid region (695)DYDY(698) from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg(271) by prothrombinase. We have also recently demonstrated that amino acid region (334)DY(335) is(More)
  • 1