Learn More
We have investigated the role of trigger RNA amplification during RNA interference (RNAi) in Caenorhabditis elegans. Analysis of small interfering RNAs (siRNAs) produced during RNAi in C. elegans revealed a substantial fraction that cannot derive directly from input dsRNA. Instead, a population of siRNAs (termed secondary siRNAs) appeared to derive from the(More)
Double-stranded RNAs can suppress expression of homologous genes through an evolutionarily conserved process named RNA interference (RNAi) or post-transcriptional gene silencing (PTGS). One mechanism underlying silencing is degradation of target mRNAs by an RNP complex, which contains approximately 22 nt of siRNAs as guides to substrate selection. A(More)
Protection of genomes against invasion by repetitive sequences, such as transposons, viruses, and repetitive transgenes, involves strong and selective silencing of these sequences. During silencing of repetitive transgenes, a trans effect ("cosuppression") occurs that results in silencing of cognate endogenous genes. Here we report RNA interference (RNAi)(More)
In Caenorhabditis elegans, an effective RNA interference (RNAi) response requires the production of secondary short interfering RNAs (siRNAs) by RNA-directed RNA polymerases (RdRPs). We cloned secondary siRNAs from transgenic C. elegans lines expressing a single 22-nucleotide primary siRNA. Several secondary siRNAs start a few nucleotides downstream of the(More)
Transposable elements are stretches of DNA that can move and multiply within the genome of an organism. The Caenorhabditis elegans genome contains multiple Tc1 transposons that jump in somatic cells, but are silenced in the germ line. Many mutants that have lost this silencing have also lost the ability to execute RNA interference (RNAi), a process whereby(More)
Posttranscriptional gene silencing in Caenorhabditis elegans results from exposure to double-stranded RNA (dsRNA), a phenomenon designated as RNA interference (RNAi), or from co-suppression, in which transgenic DNA leads to silencing of both the transgene and the endogenous gene. Here we show that single-stranded RNA oligomers of antisense polarity can also(More)
RNA interference (RNAi) is a process in which double-stranded RNA is cleaved into small interfering RNAs (siRNAs) that induce the destruction of homologous single-stranded mRNAs. Argonaute proteins are essential components of this silencing process; they bind siRNAs directly and can cleave RNA targets using a conserved RNase H motif. In Caenorhabditis(More)
In current forensic practice, information about the possible biological origin of forensic traces is mostly determined using protein-based presumptive testing. Recently, messenger RNA-profiling has emerged as an alternative strategy to examine the biological origin. Here we describe the development of a single multiplex mRNA-based system for the(More)
A collaborative exercise on mRNA profiling for the identification of blood was organized by the European DNA Profiling Group (EDNAP). Seven blood samples and one blood dilution series were analyzed by the participating laboratories for the reportedly blood-specific markers HBB, SPTB and PBGD, using different kits, chemistries and instrumentation. The(More)
Post-transcriptional gene-silencing (PTGS) was first discovered in plants and results from the sequence-specific degradation of RNA. Degradation can be activated by introducing transgenes, RNA viruses or DNA sequences that are homologous to expressed genes. A similar RNA degradation mechanism which is inducible by double-stranded RNA (dsRNAs), has been(More)