Learn More
Double-stranded RNAs can suppress expression of homologous genes through an evolutionarily conserved process named RNA interference (RNAi) or post-transcriptional gene silencing (PTGS). One mechanism underlying silencing is degradation of target mRNAs by an RNP complex, which contains approximately 22 nt of siRNAs as guides to substrate selection. A(More)
We have investigated the role of trigger RNA amplification during RNA interference (RNAi) in Caenorhabditis elegans. Analysis of small interfering RNAs (siRNAs) produced during RNAi in C. elegans revealed a substantial fraction that cannot derive directly from input dsRNA. Instead, a population of siRNAs (termed secondary siRNAs) appeared to derive from the(More)
Protection of genomes against invasion by repetitive sequences, such as transposons, viruses, and repetitive transgenes, involves strong and selective silencing of these sequences. During silencing of repetitive transgenes, a trans effect ("cosuppression") occurs that results in silencing of cognate endogenous genes. Here we report RNA interference (RNAi)(More)
Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1-4] or fortuitous production (R.v.B., unpublished data) of(More)
In Caenorhabditis elegans, an effective RNA interference (RNAi) response requires the production of secondary short interfering RNAs (siRNAs) by RNA-directed RNA polymerases (RdRPs). We cloned secondary siRNAs from transgenic C. elegans lines expressing a single 22-nucleotide primary siRNA. Several secondary siRNAs start a few nucleotides downstream of the(More)
Post-transcriptional gene-silencing (PTGS) was first discovered in plants and results from the sequence-specific degradation of RNA. Degradation can be activated by introducing transgenes, RNA viruses or DNA sequences that are homologous to expressed genes. A similar RNA degradation mechanism which is inducible by double-stranded RNA (dsRNAs), has been(More)
Posttranscriptional gene silencing in Caenorhabditis elegans results from exposure to double-stranded RNA (dsRNA), a phenomenon designated as RNA interference (RNAi), or from co-suppression, in which transgenic DNA leads to silencing of both the transgene and the endogenous gene. Here we show that single-stranded RNA oligomers of antisense polarity can also(More)
The autosomal short tandem repeat (STR) kits that are currently used in forensic science have a high discrimination power. However, this discrimination power is sometimes not sufficient for complex kinship analyses or decreases when alleles are missing due to degradation of the DNA. The Investigator HDplex kit contains nine STRs that are additional to the(More)
The IrisPlex system consists of a highly sensitive multiplex genotyping assay together with a statistical prediction model, providing users with the ability to predict blue and brown human eye colour from DNA samples with over 90% precision. This 'DNA intelligence' system is expected to aid police investigations by providing phenotypic information on(More)
Transposable elements are stretches of DNA that can move and multiply within the genome of an organism. The Caenorhabditis elegans genome contains multiple Tc1 transposons that jump in somatic cells, but are silenced in the germ line. Many mutants that have lost this silencing have also lost the ability to execute RNA interference (RNAi), a process whereby(More)