Learn More
Double-stranded RNAs can suppress expression of homologous genes through an evolutionarily conserved process named RNA interference (RNAi) or post-transcriptional gene silencing (PTGS). One mechanism underlying silencing is degradation of target mRNAs by an RNP complex, which contains approximately 22 nt of siRNAs as guides to substrate selection. A(More)
We have investigated the role of trigger RNA amplification during RNA interference (RNAi) in Caenorhabditis elegans. Analysis of small interfering RNAs (siRNAs) produced during RNAi in C. elegans revealed a substantial fraction that cannot derive directly from input dsRNA. Instead, a population of siRNAs (termed secondary siRNAs) appeared to derive from the(More)
In Caenorhabditis elegans, an effective RNA interference (RNAi) response requires the production of secondary short interfering RNAs (siRNAs) by RNA-directed RNA polymerases (RdRPs). We cloned secondary siRNAs from transgenic C. elegans lines expressing a single 22-nucleotide primary siRNA. Several secondary siRNAs start a few nucleotides downstream of the(More)
Protection of genomes against invasion by repetitive sequences, such as transposons, viruses, and repetitive transgenes, involves strong and selective silencing of these sequences. During silencing of repetitive transgenes, a trans effect ("cosuppression") occurs that results in silencing of cognate endogenous genes. Here we report RNA interference (RNAi)(More)
Transposable elements are stretches of DNA that can move and multiply within the genome of an organism. The Caenorhabditis elegans genome contains multiple Tc1 transposons that jump in somatic cells, but are silenced in the germ line. Many mutants that have lost this silencing have also lost the ability to execute RNA interference (RNAi), a process whereby(More)
Posttranscriptional gene silencing in Caenorhabditis elegans results from exposure to double-stranded RNA (dsRNA), a phenomenon designated as RNA interference (RNAi), or from co-suppression, in which transgenic DNA leads to silencing of both the transgene and the endogenous gene. Here we show that single-stranded RNA oligomers of antisense polarity can also(More)
Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1-4] or fortuitous production (R.v.B., unpublished data) of(More)
The IrisPlex system consists of a highly sensitive multiplex genotyping assay together with a statistical prediction model, providing users with the ability to predict blue and brown human eye colour from DNA samples with over 90% precision. This 'DNA intelligence' system is expected to aid police investigations by providing phenotypic information on(More)
Posttranscriptional silencing of a green fluorescent protein (GFP) transgene in Nicotiana benthamiana plants was suppressed when these plants were infected with Tomato spotted wilt virus (TSWV), a plant-infecting member of the BUNYAVIRIDAE: Infection with TSWV resulted in complete reactivation of GFP expression, similar to the case for Potato virus Y, but(More)
In current forensic practice, information about the possible biological origin of forensic traces is mostly determined using protein-based presumptive testing. Recently, messenger RNA-profiling has emerged as an alternative strategy to examine the biological origin. Here we describe the development of a single multiplex mRNA-based system for the(More)