Tithira T. Wimalasena

Learn More
The unfolded protein response (UPR) regulates the expression of genes involved in the protein secretory pathway and in endoplasmic reticulum (ER) stress in yeasts and filamentous fungi. We have characterized the global transcriptional response of Candida albicans to ER stresses (dithiothreitol and tunicamycin) and established the impact of the transcription(More)
Inhibitors released by the breakdown of plant cell walls prevent efficient conversion of sugar into ethanol. The aim of this study was to develop a fast and reliable inhibitor sensitivity assay for ethanologenic yeast strains. The assay comprised bespoke 96-well plates containing inhibitors in isolation or combination in a format that was compatible with(More)
BACKGROUND During industrial fermentation of lignocellulose residues to produce bioethanol, microorganisms are exposed to a number of factors that influence productivity. These include inhibitory compounds produced by the pre-treatment processes required to release constituent carbohydrates from biomass feed-stocks and during fermentation, exposure of the(More)
Biofuels are expected to play a role in replacing crude oil as a liquid transportation fuel, and research into butanol has highlighted the importance of this alcohol as a fuel. Butanol has a higher energy density than ethanol, butanol–gasoline blends do not separate in the presence of water, and butanol is miscible with gasoline (Szulczyk, Int J Energy(More)
AIMS Climate change is exerting an increasingly profound effect on grape composition, microbiology, chemistry and the sensory aspects of wine. Identification of autochthonous yeasts tolerant to stress could help to alleviate this effect. METHODS AND RESULTS Tolerance to osmotic pressure, ethanol and pH of 94 Saccharomyces cerevisiae strains and 29 strains(More)
BACKGROUND Saccharomyces cerevisiae is the micro-organism of choice for the conversion of fermentable sugars during beverage or bioethanol fermentations. These fermentations are characterised by high osmotic stress on a yeast cell, with selected brewing fermentations beginning at 20-25% fermentable sugars and bioethanol fermentations at 13% fermentable(More)
Saccharomyces cerevisiae is the micro-organism of choice for the conversion of monomeric sugars into bioethanol. Industrial bioethanol fermentations are intrinsically stressful environments for yeast and the adaptive protective response varies between strain backgrounds. With the aim of identifying quantitative trait loci (QTL's) that regulate phenotypic(More)
  • 1