Tiny Boumans

Learn More
Song perception in songbirds, just as music and speech perception in humans, requires processing the spectral and temporal structure found in the succession of song-syllables. Using functional magnetic resonance imaging and synthetic songs that preserved exclusively either the temporal or the spectral structure of natural song, we investigated how(More)
Songbirds have been evolved into models of choice for the study of the cerebral underpinnings of vocal communication. Nevertheless, there is still a need for in vivo methods allowing the real-time monitoring of brain activity. Functional Magnetic Resonance Imaging (fMRI) has been applied in anesthetized intact songbirds. It relies on blood oxygen(More)
The songbird brain is able to discriminate between the bird's own song and other conspecific songs. Determining where in the brain own- song selectivity emerges is of great importance because experience-dependent mechanisms are necessarily involved and because brain regions sensitive to self-generated vocalizations could mediate auditory feedback that is(More)
Manganese-enhanced magnetic resonance imaging (ME-MRI), blood oxygen-level-dependent functional MRI (BOLD fMRI) and diffusion tensor imaging (DTI) can now be applied to animal species as small as mice or songbirds. These techniques confirmed previous findings but are also beginning to reveal new phenomena that were difficult or impossible to study(More)
BACKGROUND Like human speech, birdsong is a learned behavior that supports species and individual recognition. Norepinephrine is a catecholamine suspected to play a role in song learning. The goal of this study was to investigate the role of norepinephrine in bird's own song selectivity, a property thought to be important for auditory feedback processes(More)
Auditory fMRI in humans has recently received increasing attention from cognitive neuroscientists as a tool to understand mental processing of learned acoustic sequences and analyzing speech recognition and development of musical skills. The present study introduces this tool in a well-documented animal model for vocal learning, the songbird, and provides(More)
BACKGROUND Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown.(More)
The advent of high-field MRI systems has allowed the implementation of blood oxygen level-dependent functional MRI (BOLD fMRI) on small animals. An increased magnetic field improves the signal-to-noise ratio and thus allows an improvement in the spatial resolution. However, it also increases susceptibility artefacts in the commonly acquired gradient-echo(More)
Recently, fMRI was introduced in a well-documented animal model for vocal learning, the songbird. Using fMRI and conspecific signals mixed with different levels of broadband noise, we now demonstrate auditory-induced activation representing discriminatory properties of auditory forebrain regions in anesthetized male zebra finches (Taeniopygia guttata).(More)
Songbirds share with humans the capacity to produce learned vocalizations (song). Recently, two major regions within the songbird's neural substrate for song learning and production; nucleus robustus arcopallii (RA) and area X (X) are visualized in vivo using Manganese Enhanced MRI (MEMRI). The aim of this study is to extend this to all main interconnected(More)