Learn More
This article presents a novel scale-and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features). SURF approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. This is achieved by relying on integral images for image(More)
The paper gives a snapshot of the state of the art in affine covariant region detectors, and compares their performance on a set of test images under varying imaging conditions. Six types of detectors are included: detectors based on affine normalization around Harris [24, 34] and Hessian points [24], as proposed by Mikolajczyk and Schmid and by(More)
Over the years, several spatio-temporal interest point detectors have been proposed. While some detectors can only extract a sparse set of scale-invariant features, others allow for the detection of a larger amount of features at user-defined scales. This paper presents for the first time spatio-temporal interest points that are at the same time(More)
In this paper, we introduce a new domain adaptation (DA) algorithm where the source and target domains are represented by subspaces described by eigenvectors. In this context, our method seeks a domain adaptation solution by learning a mapping function which aligns the source subspace with the target one. We show that the solution of the corresponding(More)
'Invariant regions' are self-adaptive image patches that automatically deform with changing viewpoint as to keep on covering identical physical parts of a scene. Such regions can be extracted directly from a single image. They are then described by a set of invariant features, which makes it relatively easy to match them between views, even under wide(More)
The current state of the art solutions for object detection describe each class by a set of models trained on discovered sub-classes (so called "components"), with each model itself composed of collections of interrelated parts (deformable models). These detectors build upon the now classic Histogram of Oriented Gradients+linear SVM combo. In this paper we(More)
Weakly supervised object detection, is a challenging task, where the training procedure involves learning at the same time both, the model appearance and the object location in each image. The classical approach to solve this problem is to consider the location of the object of interest in each image as a latent variable and minimize the loss generated by(More)
'Invariant regions' are image patches that automatically deform with changing viewpoint as to keep on covering identical physical parts of a scene. Such regions are then described by a set of invariant features, which makes it relatively easy to match them between views and under changing illumination. In previous work, we have presented invariant regions(More)