Learn More
Most cancer cells utilize aerobic glycolysis, and activation of the phosphoinositide 3-kinase/Akt/mTOR pathway can promote this metabolic program to render cells glucose dependent. Although manipulation of glucose metabolism may provide a means to specifically eliminate cancer cells, mechanistic links between cell metabolism and apoptosis remain poorly(More)
Alzheimer's disease is a devastating cureless neurodegenerative disorder affecting >35 million people worldwide. The disease is caused by toxic oligomers and aggregates of amyloid β protein and the microtubule-associated protein tau. Recently, the Lys-specific molecular tweezer CLR01 has been shown to inhibit aggregation and toxicity of multiple(More)
The hypoxic tumor microenvironment serves as a niche for maintaining the glioma-initiating cells (GICs) that are critical for glioblastoma (GBM) occurrence and recurrence. Here, we report that hypoxia-induced miR-215 is vital for reprograming GICs to fit the hypoxic microenvironment via suppressing the expression of an epigenetic regulator KDM1B and(More)
Abnormal protein assembly causes multiple devastating disorders in the central nervous system (CNS), such as Alzheimer's, Parkinson's, Huntington's, and prion diseases. Due to the now extended human lifespan, these diseases have been increasing in prevalence, resulting in major public health problems and the associated financial difficulties worldwide. The(More)
The PI3K/Akt pathway is activated in stimulated cells and in many cancers to promote glucose metabolism and prevent cell death. Although inhibition of Akt-mediated cell survival may provide a means to eliminate cancer cells, this survival pathway remains incompletely understood. In particular, unlike anti-apoptotic Bcl-2 family proteins that prevent(More)
Alzheimer's disease is a progressive neurodegenerative disease that manifests as memory loss, cognitive dysfunction, and dementia. Animal models of Alzheimer's disease have been instrumental in understanding the underlying pathological mechanism and in evaluation of potential therapies. The triple transgenic (3 × Tg) mouse model of AD is unique because it(More)
Self-assembly of amyloid β-protein (Aβ) into toxic oligomers and fibrillar polymers is believed to cause Alzheimer's disease (AD). In the AD brain, a high percentage of Aβ contains Met-sulfoxide at position 35, though the role this modification plays in AD is not clear. Oxidation of Met(35) to sulfoxide has been reported to decrease the extent of Aβ(More)
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy associated with Notch pathway mutations. While both normal activated and leukemic T cells can utilize aerobic glycolysis to support proliferation, it is unclear to what extent these cell populations are metabolically similar and if differences reveal T-ALL vulnerabilities. Here we show(More)
Alzheimer's disease is a devastating cureless neurodegenerative disorder affecting 435 million people worldwide. The disease is caused by toxic oligomers and aggregates of amyloid b protein and the microtubule-associated protein tau. Recently, the Lys-specific molecular tweezer CLR01 has been shown to inhibit aggregation and toxicity of multiple(More)
INTRODUCTION Tumor immunotherapy have broadened therapeutic options for tumor treatment. The role of immune function in juvenile recurrent respiratory papillomatosis (JRRP) has not been investigated. Applying immunoblockade inhibitors as a novel disease treatment is unclear. Our study, for the first time, evaluates immune infiltration and immuno-suppressive(More)