Learn More
In this work, a highly sensitive and selective biomimetic electrochemical sensor for the amperometric detection of trace dopamine (DA) in human serums was achieved by gold nanoparticles (AuNPs) doped molecularly imprinted polymers (MIPs). Functionalized AuNPs (F-AuNPs), a novel functional monomer bearing aniline moieties on the surface of the AuNPs, were(More)
In this work, a highly sensitive and selective biomimetic electrochemical sensor for Sildenafil in herbal sexual health products was prepared. Reduced graphene oxide (RGO), a novel highly conductive material was used to modify glassy carbon electrode (GCE) through layer-by-layer (LBL) self-assembly. The conductive molecularly imprinted films were(More)
A novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@Polyaniline nanoparticles (Fe3O4@PANI NPs) has been for the first time fabricated for the sensitive detection of creatinine in biological fluids. The template molecule, creatinine, was self-assembled on the surface of Fe3O4@PANI NPs together with the functional(More)
In this paper, an electrochemical sensor for 17β-estradiol (E2) based on the molecular imprinting polymer (MIP) membranes had been constructed. 6-mercaptonicotinic acid (MNA) and E2 were first assembled on the surface of platinum nanoparticles-modified glassy carbon electrode (PtNPs/GCE) by the formation of Pt-S bonds and hydrogen-bonding interactions, and(More)
An analytical procedure for selective extraction of sildenafil and vardenafil in herbal dietary supplements (HDSs) has been set up by using the magnetic molecularly imprinted polymers (MMIPs) as the extraction and clean-up materials, followed by high performance liquid chromatography-ultraviolet (HPLC-UV). The MMIPs were prepared by a surface molecular(More)
This paper reports a surface molecular self-assembly strategy for molecular imprinting on magnetic nanoparticles for selective separation and detection of estrogens in feeds. First, γ-methacryloxypropyltrimethoxysilane (MEMO) was successfully assembled at the surface magnetic nanoparticles through simple free radical polymerization, and subsequently, the(More)
In this paper, the novel surface molecularly imprinted polymers based on dendritic-grafting magnetic nanoparticles were developed to enrich and separate glibenclamide in health foods. The density functional theory method was used to give theoretical directions to the synthesis of molecularly imprinted polymers. The polymers were prepared by using magnetic(More)
To assess the potential risks associated with the environmental exposure of steroid estrogens, a novel highly efficient and selective estrogen enrichment procedure based on the use of molecularly imprinted polymer has been developed and evaluated. Herein, analogue of estrogens, namely 17-ethyl estradiol (EE(2)) was used as the pseudo template, to avoid the(More)
  • 1