Tingping Zhang

Learn More
Broadband frequency-selective fading channels usually have the inherent sparse nature. By exploiting the sparsity, adaptive sparse channel estimation (ASCE) methods, e.g., reweighted L1-norm least mean square (RL1-LMS), could bring a performance gain if additive noise satisfying Gaussian assumption. In real communication environments, however, channel(More)
Robust channel estimation is required for coherent demodulation in multipath fading wireless communication systems which are often deteriorated by non-Gaussian noises. Our research is motivated by the fact that classical sparse least mean square error (LMS) algorithms are very sensitive to impulsive noise while standard SLMS algorithm does not take into(More)
The sign least mean square with reweighted L1-norm constraint (SLMS-RL1) algorithm is an attractive sparse channel estimation method among Gaussian mixture model (GMM) based algorithms for use in impulsive noise environments. The channel sparsity can be exploited by SLMS-RL1 algorithm based on appropriate reweighted factor, which is one of key parameters to(More)
  • 1