Learn More
For many sensor network applications such as military surveillance, it is necessary to provide full sensing coverage to a security-sensitive area while at the same time minimizing energy consumption and extending system lifetime by leveraging the redundant deployment of sensor nodes. It is also preferable for the sensor network to provide differentiated(More)
Multi-frequency media access control has been well understood in general wireless ad hoc networks, while in wireless sensor networks, researchers still focus on single frequency solutions. In wireless sensor networks, each device is typically equipped with a single radio transceiver and applications adopt much smaller packet sizes compared to those in(More)
The focus of surveillance missions is to acquire and verify information about enemy capabilities and positions of hostile targets. Such missions often involve a high element of risk for human personnel and require a high degree of stealthiness. Hence, the ability to deploy unmanned surveillance missions, by using wireless sensor networks, is of great(More)
A wide variety of sensors have been incorporated into a spectrum of wireless sensor network (WSN) platforms, providing flexible sensing capability over a large number of low-power and inexpensive nodes. Traditional signal processing algorithms, however, often prove too complex for energy-and-cost-effective WSN nodes. This study explores how to design(More)
This article describes one of the major efforts in the sensor network community to build an integrated sensor network system for surveillance missions. The focus of this effort is to acquire and verify information about enemy capabilities and positions of hostile targets. Such missions often involve a high element of risk for human personnel and require a(More)
Target tracking systems, consisting of thousands of low-cost sensor nodes, have been used in many application domains such as battlefield surveillance, wildlife monitoring and border security. These applications need to meet certain real-time constraints in response to transient events, such as fast-moving targets. While the real-time performance is a major(More)
In surveillance and tracking applications, wireless sensor nodes collectively monitor the existence of intruding targets. In this paper, we derive closed form results for predicting surveillance performance attributes, represented by detection probability and average detection delay of intruding targets, based on tunable system parameters, represented by(More)
Energy efficiency is a fundamental issue for outdoor sensor network systems. This article presents the design and implementation of multidimensional power management strategies in VigilNet, a major recent effort to support long-term surveillance using power-constrained sensor devices. A novel tripwire service is integrated with an effective sentry and duty(More)
In this paper, we address the deployment problem for differentiated detection requirements, in which the required detection probability thresholds at different locations are different. We focus on differentiated deployment algorithms that are applied to the probabilistic detection model, since it is more realistic than the binary detection model. We show(More)
We have developed an analysis-based design tool, ANDES, for modeling a wireless sensor network system and analyzing its performance before deployment. ANDES enables designers to systematically develop a model for the system, refine it iteratively by tuning the system parameters based on existing analysis techniques, and resolve key design decisions(More)