Learn More
We propose a novel optical method to display a complex Fresnel hologram using a single spatial light modulator (SLM). The method consists of a standard coherent image processing system with a sinusoidal grating at the Fourier plane. Two or three position-shifted amplitude holograms displayed at the input plane of the processing system can be coupled via the(More)
Most commonly used methods for three-dimensional (3D) fluorescence microscopy make use of sectioning techniques that require that the object be physically scanned in a series of two-dimensional (2D) sections along the z axis. The main drawback in these approaches is the need for these sequential 2D scans. An alternative approach to fluorescence imaging in(More)
Scanning heterodyne holography is an alternative way of capturing three-dimensional information on a scattering or fluorescent object. We analyze the properties of the images obtained by this novel imaging process. We describe the possibility of varying the coherence of the system from a process linear in amplitude to a process linear in intensity by(More)
Twin-image elimination in the context of optical scanning holography has recently been proposed. The proposed technique involves simultaneously acquiring sine and cosine Fresnel holograms. A complex hologram is then formed by complex addition of the holograms, and twin-image rejection is predicted by computer simulations. An experimental verification of the(More)
Conventional methods of quadrature phase-shifting holography require two holograms and either intensity distribution of the reference wave or that of the object wave to reconstruct an original object without the zero order and the twin-image noise in an on-axis holographic recording setup. We present a technique called two-step-only quadrature(More)
Fast acquisition and high axial resolution are two primary requirements for three-dimensional microscopy. However, they are sometimes conflicting: imaging modalities such as confocal imaging can deliver superior resolution at the expense of sequential acquisition at different axial planes, which is a time-consuming process. Optical scanning holography (OSH)(More)
We propose a method for secure wireless transmission of encrypted information. By use of an encryption key, an image or document is optically encrypted by optical heterodyne scanning and hence encryption is performed on the fly. We call this technique optical scanning cryptography. The output of the heterodyne encrypted signal is at radio frequency and can(More)
This paper discusses the reconstruction of sectional images from a hologram generated by optical scanning holography. We present a mathematical model for the holographic image capture, which facilitates the use of inverse imaging techniques to recover individual sections. This framework is much more flexible than existing work, in the sense that it can(More)