Ting-Chung Poon

Learn More
Optical scanning holography is a powerful holographic recording technique in which only a single two-dimensional scan is needed to record three-dimensional information. As in standard digital holography, for the reconstruction of a sectional image, the resulting data must then be postprocessed to obtain sectional content. We propose a blind sectional image(More)
Most commonly used methods for three-dimensional (3D) fluorescence microscopy make use of sectioning techniques that require that the object be physically scanned in a series of two-dimensional (2D) sections along the z axis. The main drawback in these approaches is the need for these sequential 2D scans. An alternative approach to fluorescence imaging in(More)
In this paper, we use two point sources to analyze the depth resolution of an optical scanning holography (OSH) system with a single-wavelength source. A dual-wavelength source is then employed to improve it, where this dual-wavelength OSH (DW-OSH) system is modeled with a linear system of equations. Object sectioning in DW-OSH is obtained with the Fourier(More)
We propose a novel optical method to display a complex Fresnel hologram using a single spatial light modulator (SLM). The method consists of a standard coherent image processing system with a sinusoidal grating at the Fourier plane. Two or three position-shifted amplitude holograms displayed at the input plane of the processing system can be coupled via the(More)
A real-time electron-beam-addressed spatial light modulator-based holographic imaging system has recently been proposed. We present results of two-dimensional holographic imaging and further demonstrate that the proposed system can be readily adaptable to automation by using digital computers for robust holographic imaging. Specifically, by nonlinear(More)
A three-dimensional (3-D) optical image-recognition technique is proposed and studied. The proposed technique is based on two-pupil optical heterodyne scanning and is capable of performing 3-D image recognition. A hologram of the 3-D reference object is first created and then is used to modulate spatially one of the pupils of the optical system; the other(More)
Twin-image elimination in the context of optical scanning holography has recently been proposed. The proposed technique involves simultaneously acquiring sine and cosine Fresnel holograms. A complex hologram is then formed by complex addition of the holograms, and twin-image rejection is predicted by computer simulations. An experimental verification of the(More)
Scanning heterodyne holography is an alternative way of capturing three-dimensional information on a scattering or fluorescent object. We analyze the properties of the images obtained by this novel imaging process. We describe the possibility of varying the coherence of the system from a process linear in amplitude to a process linear in intensity by(More)
Fast acquisition and high axial resolution are two primary requirements for three-dimensional microscopy. However, they are sometimes conflicting: imaging modalities such as confocal imaging can deliver superior resolution at the expense of sequential acquisition at different axial planes, which is a time-consuming process. Optical scanning holography (OSH)(More)