Learn More
Vagus nerve stimulation (VNS) is an effective adjunctive treatment for medically refractory epilepsy. In this study, we measured VNS-induced changes in hippocampal neurotransmitter levels and determined their potential involvement in the anticonvulsive action of VNS, to elucidate the mechanism of action responsible for the seizure suppressing effect of VNS(More)
Deep brain stimulation (DBS) is a promising experimental approach to treat various neurological disorders. However, the optimal stimulation paradigm and the precise mechanism of action of DBS are unknown. Neuro-imaging by means of Single Photon Emission Computed Tomography (SPECT) is a non-invasive manner of evaluating regional cerebral blood flow (rCBF)(More)
PURPOSE Despite different treatment options for patients with refractory epilepsy such as epilepsy surgery and neurostimulation, many patients still have seizures and/or drug-related cerebral and systemic side effects. Local intracerebral delivery of antiepileptic compounds may represent a novel strategy with specific advantages such as the option of higher(More)
PURPOSE This experimental animal study evaluates the effect of high frequency deep brain stimulation (HFS DBS) on seizures in the Alternate Day Rapid Kindling model for temporal lobe epilepsy (TLE). The target for HFS is the hippocampus, as this structure is often presumed to be the seizure focus in human TLE. METHODS Rats (n = 12) were fully kindled in(More)
INTRODUCTION In this paper we propose a technique based on reservoir computing (RC) to mark epileptic seizures on the intra-cranial electroencephalogram (EEG) of rats. RC is a recurrent neural networks training technique which has been shown to possess good generalization properties with limited training. MATERIALS The system is evaluated on data(More)
Despite the advent of new pharmacological treatments and the high success rate of many surgical treatments for epilepsy, a substantial number of patients either do not become seizure-free or they experience major adverse events (or both). Neurostimulation-based treatments have gained considerable interest in the last decade. Vagus nerve stimulation (VNS) is(More)
PURPOSE Hippocampal deep brain stimulation (DBS) is an experimental therapy for patients with pharmacoresistant temporal lobe epilepsy (TLE). Despite the successful clinical application of DBS, the optimal stimulation parameters are undetermined. We evaluate the efficacy of a new form of DBS, using continuous stimuli with Poisson distributed intervals(More)
PURPOSE Cell transplantation is being investigated as an alternative treatment for medically refractory temporal lobe epilepsy (TLE). In this study the fate of adult-derived neurosphere cells was evaluated after transplantation in the lesioned hippocampus of the intrahippocampal kainic acid (KA) model for TLE. METHODS Neurosphere-forming cells were(More)
UNLABELLED Abnormal glutamate transmission is involved in various neurologic disorders, such as epilepsy, schizophrenia, and Parkinson disease. At present, no imaging techniques are capable of measuring acute fluctuations in endogenous glutamate levels in vivo. We evaluated the potential of (11)C-ABP688, a PET ligand that binds to an allosteric site of the(More)
Hippocampal Deep Brain Stimulation (DBS) is proposed as an experimental treatment for refractory epilepsy, but the optimal stimulation parameters are undetermined. High frequency hippocampal DBS at 130Hz is effective in both animals and patients with epilepsy. Low frequency stimulation (approximately 5Hz) is assumed to have anti-epileptic properties but the(More)