Tina M Salmassi

Learn More
Little is known about the prebiotic mechanisms that initiated the bioavailability of phosphorus, an element essential to life. A better understanding of phosphorus speciation in modern earth environments representative of early earth may help to elucidate the origins of bioavailable phosphorus. This paper presents the first quantitative measurements of(More)
At Hot Creek in California, geothermally derived arsenite is rapidly oxidized to arsenate. This process is mediated by microorganisms colonizing the surfaces of submerged aquatic macrophytes in the creek. Here we describe a multifaceted approach to characterizing this biofilm community and its activity. Molecular techniques were used to describe the(More)
Current doctrine states that phosphorus is incorporated into cells in the pentavalent(V) oxidation state as orthophosphate. However, recent studies show that microorganisms contain enzymes used to metabolize reduced forms of phosphorous, including phosphite(III) and hypophosphite(I), which suggests that there is a natural source for these chemical species.(More)
It is commonly assumed that phosphorus occurs almost exclusively in the environment as fully oxidized phosphate (primarily H(2)PO(4)(-) and HPO(4)(2-), where the oxidation state of phosphorus is +V). Recent developments in the field of microbiology and research on the origin of life have suggested a possibly significant role for reduced, inorganic forms of(More)
The hindguts of wood-feeding termites are the sites of intense, CO2-reductive acetogenesis. This activity profoundly influences host nutrition and methane emissions. Homoacetogens previously isolated from diverse termites comprised novel taxa belonging to two distinct bacterial phyla, Firmicutes and Spirochates. Little else is known about either the(More)
Historically, it was assumed that reactive, inorganic phosphorus present in pristine environments was solely in the form of orthophosphate. However, this assumption contradicts theories of biogenesis and the observed metabolic behavior of select microorganisms. This paper discusses the role of ion chromatography (IC) in elucidating the oxidation-reduction(More)
Recent developments in the field of microbiology and research on the origin of life have suggested a possible significant role for reduced, inorganic forms of phosphorus (P) such as phosphite [HPO(3)(2-), P(+III)] and hypophosphite [H(2)PO(2)(-), P(+I)] in the biogeochemical cycling of P. New, robust methods are required for the detection of reduced P(More)
  • 1