Tina M. Lamey

Learn More
Next-generation sequencing, also known as massively paralleled sequencing, offers an unprecedented opportunity to study disease mechanisms of inherited retinal dystrophies: a dramatic change from a few years ago. The specific involvement of the retina and the manageable number of genes to sequence make inherited retinal dystrophies an attractive model to(More)
PURPOSE Abnormalities in the BEST1 gene have recently been recognised as causing autosomal recessive bestrophinopathy (ARB). ARB has been noted to have a variable phenotypic presentation, distinct from that of autosomal dominant Best vitelliform macular dystrophy (BVMD). Both conditions are associated with deposits in the retina, a reduced or absent(More)
PURPOSE To present en face optical coherence tomography (OCT) images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities. METHODS En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory) and(More)
The assignment of pathogenicity to variants suspected of causing an inherited retinal disease and the subsequent creation of molecular genetic reports sent to clinical geneticists and ophthalmologists has traditionally been time-consuming and subject to error and ambiguity. The purpose of this paper is to describe a computer-assisted method we have(More)
PURPOSE Retinitis pigmentosa (RP) is the most common form of inherited blindness, caused by progressive degeneration of photoreceptor cells in the retina, and affects approximately 1 in 3,000 people. Over the past decade, significant progress has been made in gene therapy for RP and related diseases, making genetic characterization increasingly important.(More)
  • 1