Timothy T Strassmaier

Learn More
Reduced functional bladder capacity and concomitant increased micturition frequency (pollakisuria) are common lower urinary tract symptoms associated with conditions such as cystitis, prostatic hyperplasia, neurological disease, and overactive bladder syndrome. These symptoms can profoundly affect the quality of life of afflicted individuals, but available(More)
Action potentials in many central neurons are followed by a prolonged afterhyperpolarization (AHP) that influences firing frequency and affects neuronal integration. In hippocampal CA1 pyramidal neurons, the current ascribed to the AHP (IAHP) has three kinetic components. The IfastAHP is predominantly attributable to voltage-dependent K+ channels, whereas(More)
Apamin-sensitive, small-conductance, Ca2+-activated K+ channels (SK channels) modulate neuronal excitability in CA1 neurons. Blocking all SK channel subtypes with apamin facilitates the induction of hippocampal synaptic plasticity and enhances hippocampal learning. In CA1 dendrites, SK channels are activated by Ca2+ through NMDA receptors and restrict(More)
The SK2 subtype of small conductance Ca2+-activated K+ channels is widely distributed throughout the central nervous system and modulates neuronal excitability by contributing to the afterhyperpolarization that follows an action potential. Western blots of brain membrane proteins prepared from wild type and SK2-null mice reveal two isoforms of SK2, a 49-kDa(More)
Lysyl oxidase (EC oxidizes peptidyl lysine to peptidyl aldehyde residues within collagen and elastin, thus initiating formation of the covalent cross-linkages that insolubilize these extracellular proteins. Recent findings raise the possibility that this enzyme may also function intracellularly. The present study provides evidence by(More)
Components from the extracellular surface of CCR5 interact with certain macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1) to mediate viral fusion and entry. To mimic these viral interacting site(s), the amino-terminal and extracellular loop segments of CCR5 were linked in tandem to form concatenated polypeptides, or grafted onto a(More)
Cyclic nucleotide-gated (CNG) ion channels play a central role in vision and olfaction, generating the electrical responses to light in photoreceptors and to odorants in olfactory receptors. These channels have been detected in many other tissues where their functions are largely unclear. The use of gene knockouts and other methods have yielded some(More)
Cyclic nucleotide-gated (CNG) channels, key players in olfactory and visual signal transduction, generate electrical responses to odorant- and light-induced changes in cyclic nucleotide concentration. Previous work suggests that substitutions are tolerated solely at the C8 position on the purine ring of cGMP. Our studies with C8, 2'-OH, and 2-NH2-modified(More)
Five new tetracaine analogues were synthesized and evaluated for potency of blockade of cyclic nucleotide-gated channels relative to a multiply charged tetracaine analogue described previously. Increased positive charge at the tertiary amine end of tetracaine results in higher potency and voltage dependence of block. Modifications that reduce the(More)
A series of new tetracaine derivatives was synthesized to explore the effects of hydrophobic character on blockade of cyclic nucleotide-gated (CNG) channels. Increasing the hydrophobicity at either of two positions on the tetracaine scaffold, the tertiary amine or the butyl tail, yields blockers with increased potency. However, shape also plays an important(More)
  • 1