Learn More
Apamin-sensitive, small-conductance, Ca2+-activated K+ channels (SK channels) modulate neuronal excitability in CA1 neurons. Blocking all SK channel subtypes with apamin facilitates the induction of hippocampal synaptic plasticity and enhances hippocampal learning. In CA1 dendrites, SK channels are activated by Ca2+ through NMDA receptors and restrict(More)
Action potentials in many central neurons are followed by a prolonged afterhyperpolarization (AHP) that influences firing frequency and affects neuronal integration. In hippocampal CA1 pyramidal neurons, the current ascribed to the AHP (IAHP) has three kinetic components. The IfastAHP is predominantly attributable to voltage-dependent K+ channels, whereas(More)
The SK2 subtype of small conductance Ca2+-activated K+ channels is widely distributed throughout the central nervous system and modulates neuronal excitability by contributing to the afterhyperpolarization that follows an action potential. Western blots of brain membrane proteins prepared from wild type and SK2-null mice reveal two isoforms of SK2, a 49-kDa(More)
Reduced functional bladder capacity and concomitant increased micturition frequency (pollakisuria) are common lower urinary tract symptoms associated with conditions such as cystitis, prostatic hyperplasia, neurological disease, and overactive bladder syndrome. These symptoms can profoundly affect the quality of life of afflicted individuals, but available(More)
Cyclic nucleotide-gated (CNG) ion channels play a central role in vision and olfaction, generating the electrical responses to light in photoreceptors and to odorants in olfactory receptors. These channels have been detected in many other tissues where their functions are largely unclear. The use of gene knockouts and other methods have yielded some(More)
Cyclic nucleotide-gated (CNG) channels, key players in olfactory and visual signal transduction, generate electrical responses to odorant- and light-induced changes in cyclic nucleotide concentration. Previous work suggests that substitutions are tolerated solely at the C8 position on the purine ring of cGMP. Our studies with C8, 2'-OH, and 2-NH2-modified(More)
  • 1