Learn More
Ion channels are regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. Evidence for the latter process, tyrosine phosphorylation, has increased substantially since this topic was last reviewed. In this review, we present a comprehensive summary and synthesis of the literature regarding the mechanism and(More)
Acute exposure to airborne pollutants, such as solid particulate matter (PM), increases the risk of cardiovascular dysfunction, but the mechanisms by which PM evokes systemic effects remain to be identified. The purpose of this study was to determine if pulmonary exposure to a PM surrogate, such as residual oil fly ash (ROFA), affects endothelium-dependent(More)
BACKGROUND We have shown that pulmonary exposure to fine particulate matter (PM) impairs endothelium dependent dilation in systemic arterioles. Ultrafine PM has been suggested to be inherently more toxic by virtue of its increased surface area. The purpose of this study was to determine if ultrafine PM (or nanoparticle) inhalation produces greater(More)
Cerium dioxide nanoparticles (CeO2 NP) hold great therapeutic potential, but the in vivo effects of non-pulmonary exposure routes are unclear. The first aim was to determine whether microvascular function is impaired after intravenous and gastric CeO2 NP exposure. The second aim was to investigate the mechanism(s) of action underlying microvascular(More)
This review summarizes what is currently known about the role of integrins in the vascular myogenic response. The myogenic response is the rapid and maintained constriction of a blood vessel in response to pressure elevation. A role for integrins in this process has been suggested because these molecules form an important mechanical link between the(More)
The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius(More)
We have shown that pulmonary nanoparticle exposure impairs endothelium dependent dilation in systemic arterioles. However, the mechanism(s) through which this effect occurs is/are unclear. The purpose of this study was to identify alterations in the production of reactive species and endogenous nitric oxide (NO) after nanoparticle exposure, and determine(More)
Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations. Rats were(More)
Cerium dioxide nanoparticles (CeO2 NPs) are an engineered nanomaterial (ENM) that possesses unique catalytic, oxidative, and reductive properties. Currently, CeO2 NPs are being used as a fuel catalyst but these properties are also utilized in the development of potential drug treatments for radiation and stroke protection. These uses of CeO2 NPs present a(More)
Advances in chemistry and engineering have created a new technology, nanotechnology, involving the tiniest known manufactured products. These products have a rapidly increasing market share and appear poised to revolutionize engineering, cosmetics, and medicine. Unfortunately, nanotoxicology, the study of nanoparticulate health effects, lags behind advances(More)