Learn More
Pharmaceutically active compounds (PhACs) in the environment lately have been acknowledged to constitute a health risk for humans and terrestrial and aquatic ecosystems. Human and veterinary applications are the main sources of PhACs in the environment and the major pathways are excretion and discharge to the environment through sewage treatment plants(More)
This is a review of physical, chemical, and biological processes governing microbial transport in the saturated subsurface. We begin with the conceptual models of the biophase that underlie mathematical descriptions of these processes and the physical processes that provide the framework for recent focus on less understood processes. Novel conceptual models(More)
The diffusion of a chemical disinfectant into wastewater particles may be viewed as a serial two-step process involving transport through a macroporous network of pathways to micropores that lead into dense cellular regions. Previous research reveals that ultraviolet (UV) light penetration into wastewater particles is limited primarily to macropores,(More)
Heavy metals can significantly affect the kinetics of substrate biodegradation and microbial growth, including lag times and specific growth rates. A model to describe microbial metabolic lag as a function of the history of substrate concentration has been previously described by Wood et al. (Water Resour Res 31:553-563) and Ginn (Water Resour Res(More)
The transport of colloids and bacterial cells through saturated porous media is a complex phenomenon involving many interrelated processes that are often treated via application of classical colloid filtration theory (CFT). This paper presents a numerical investigation of CFT from the Lagrangian perspective, to evaluate the role of some of the classical(More)
The prokaryotic diversity associated with highly metal-contaminated sediment samples collected from the Coeur d'Alene River (CdAR) was investigated using a cultivation-independent approach. Bacterial community structure was studied by constructing an RNA polymerase beta subunit (rpoB) gene library. Phylogenetic analysis revealed that 75.8% of the rpoB(More)
Reactive properties of aquifer solid phase materials play an important role in solute fate and transport in the natural subsurface on time scales ranging from years in contaminant remediation to millennia in dynamics of aqueous geochemistry. Quantitative tools for dealing with the impact of natural heterogeneity in solid phase reactivity on solute fate and(More)
Infectious disease within outmigrant juvenile salmon in the Columbia River Basin is modulated, in part, by abiotic stressors that influence host-susceptibility. Through the application of a dose-structured population dynamic model, we show that chemical (both in the river and in the estuary) and in-river (e.g., dams and/or predation) stressors influence(More)
  • T R Ginn
  • 2001
An effective streamtube ensemble method is developed to upscale convective-dispersive transport with multicomponent nonlinear reactions in steady nonuniform flow. The transport is cast in terms of a finite ensemble of independent discrete streamtubes that approximate convective transport along macroscopically averaged pathlines and dispersive transport(More)
We expand the governing equation of groundwater age to account for non-Fickian dispersive fluxes using continuous random walks. Groundwater age is included as an additional (fifth) dimension on which the volumetric mass density of water is distributed and we follow the classical random walk derivation now in five dimensions. The general solution of the(More)