Timothy Prescott

Learn More
ABSTRACT. We consider the nearest-neighbor simple random walk on Z, d ≥ 2, driven by a field of i.i.d. random nearest-neighbor conductances ωxy ∈ [0, 1]. Apart from the requirement that the bonds with positive conductances percolate, we pose no restriction on the law of the ω’s. We prove that, for a.e. realization of the environment, the path distribution(More)
We present a constructive proof of Ky Fan’s combinatorial lemma concerning labellings of triangulated spheres. Our construction works for triangulations of Sn that contain a flag of hemispheres. As a consequence, we produce a constructive proof of Tucker’s lemma that holds for a larger class of triangulations than previous constructive proofs.
STUDY DESIGN This study investigated whether access to genitourinary medicine (GUM) clinics meets UK-recommended standards. METHODS In January 2014 and 2015, postal questionnaires about appointment and service characteristics were sent to lead clinicians of UK GUM clinics. In February 2014 and 2015, researchers posing as symptomatic and asymptomatic(More)
Given n vectors {~ αi}i=1 ∈ [0, 1), consider a random walk on the ddimensional torus T = R/Z generated by these vectors by successive addition and subtraction. For certain sets of vectors, this walk converges to Haar (uniform) measure on the torus. We show that the discrepancy distance D(Q) between the k-th step distribution of the walk and Haar measure is(More)
  • 1