Learn More
This paper describes a computationally efficient method to simulate mixed-domain systems under the requirements of a system-level framework. The approach is the combined use of Modified Nodal Analysis (MNA) for the representation of a mixed-technology device and piecewise linear (PWL) techniques to overcome the costly numerical evaluation found in(More)
A Multiple Input, Multiple Output (MIMO) diffuse optical communications link is implemented and evaluated in this letter. We have adapted a 2x2 Alamouti-type space-time coding (STC) scheme to increase link performance beyond that of Single Input, Single Output (SISO), and Multiple Input, Single Output (MISO) systems. Using our experimental testbed and(More)
Chatoyant is a tool for the simulation and the analysis of heterogeneous free-space optoelectronic architectures. It is capable of modeling digital and analog electronic and optical signal propagation with mechanical tolerancing at the system level. We present models for a variety of optoelectronic devices and results that demonstrate the system's ability(More)
—We present a component-based multi-level mixed-signal design and simulation environment for microsystems spanning the domains of electronics, mechanics, and optics. The environment provides a solution to the problem of accurate modeling and simulation of multi-domain devices at the system level. This is achieved by partitioning the system into components(More)
This paper presents a system capable of static and dynamic simulationsof heterogeneous opto-electronic systems. It is capable ofmodeling Gaussian optical signal propagation with mechanicaltolerancing at the system level. We present results which demonstratethe system's ability to predict the effects of various componentparameters, such as detector geometry,(More)
—Mixed-signal multidomain systems present a challenge for computer-aided design tools. Optical and electronic simulation tools are available as separate entities. However, to date, successful system-level cosimulation has not been implemented , leading to expensive refabrication. We present a unique system-level simulation tool for mixed electrooptical(More)
We demonstrate a means of creating a digital image by using a two-axis tilt micromirror to scan a scene. For each different orientation we extract a single gray scale value from the mirror and combine them to form a single composite image. This allows one to choose the distribution of the samples, and so in principle a variable resolution image could be(More)
In this thesis, we determine and implement an optical propagation technique suitable for system-level simulation of optical micro-systems. The Rayleigh-Sommerfeld formulation is selected as the optical propagation modeling technique because it satisfies the requirements of a system-level CAD tool and supports accurate modeling at propagation distances on(More)
This paper describes the development of a new Software Defined Communications (SDC) testbed architecture. SDC aims to generalize the area of software defined radio to include propagation media not exclusively limited to radio frequencies (optical, ultrasonic, etc.). This SDC platform leverages existing and custom hardware in combination with reference(More)
As designers become more aggressive in introducing optical components to micro-systems, rigorous optical models are required for system-level simulation tools. Common optical modeling techniques and approximations are not valid for most optical micro-systems, and those techniques that provide accurate simulation are computationally slow. In this paper, we(More)