Learn More
In order to maintain stable functionality in the face of continually changing input, neurones in the CNS must dynamically modulate their electrical characteristics. It has been hypothesized that in order to retain stable network function, neurones possess homeostatic mechanisms which integrate activity levels and alter network and cellular properties in(More)
Experimental observations reveal that the expression levels of different ion channels vary across neurons of a defined type, even when these neurons exhibit stereotyped electrical properties. However, there are robust correlations between different ion channel expression levels, although the mechanisms that determine these correlations are unknown. Using(More)
Neuromodulation underlies many behavioral states and has been extensively studied in small circuits. This has allowed the systematic exploration of how neuromodulatory substances and the neurons that release them can influence circuit function. The physiological state of a network and its level of activity can have profound effects on how the modulators(More)
Subtypes of NMDARs (N-methyl-D-aspartate receptors) display differences in their pharmacological and biophysical properties. The differences are, to a large extent, determined by the identities of the GluN2 (glutamate-binding) NMDAR subunits that are co-expressed with GluN1 (glycine-binding) subunits, which form the final tetrameric NMDAR assembly. Of the(More)
Motor neuron activity is transformed into muscle movement through a cascade of complex molecular and biomechanical events. This nonlinear mapping of neural inputs to motor behaviors is called the neuromuscular transform (NMT). We examined the NMT in the cardiac system of the lobster Homarus americanus by stimulating a cardiac motor nerve with rhythmic(More)
Many studies examine the actions of ethanol on N-methyl-D-aspartate (NMDA) receptors using concentrations that are highly toxic (>or=100 mM). This study re-assesses the actions of ethanol at concentrations based around the US/UK 'drink-drive' limit (17 mM). Using two-electrode voltage-clamp recordings we examined the actions of ethanol on recombinant(More)
PURPOSE To measure the concentrations of polyamines, determine their cellular and subcellular localization, and analyze effects of their depletion in developing rabbit retina. METHODS Isolated retinas at different developmental stages were analyzed for polyamine content by high-performance liquid chromatography (HPLC). An antibody against polyamines was(More)
Thermosensation is critical for optimal regulation of physiology and behavior. C. elegans acclimates to its cultivation temperature (Tc) and exhibits thermosensitive behaviors at temperatures relative to Tc. These behaviors are mediated primarily by the AFD sensory neurons, which are extraordinarily thermosensitive and respond to thermal fluctuations at(More)