Timothy J Maguire

Learn More
The past three decades have seen the emergence of an endeavor called tissue engineering and regenerative medicine in which scientists, engineers, and physicians apply tools from a variety of fields to construct biological substitutes that can mimic tissues for diagnostic and research purposes and can replace (or help regenerate) diseased and injured(More)
Within the global pharmaceutical and biotech industries, there is significant interest in identifying in vitro screening systems that are more human-relevant-i.e., that offer greater utility in predicting subcellular and cellular physiological responses in humans in vivo-and that thereby allow investigators to reduce the incidence of costly late-stage(More)
Macrovesicular steatosis in greater than 30% of hepatocytes is a significant risk factor for primary graft nonfunction due to increased sensitivity to ischemia reperfusion (I/R) injury. The growing prevalence of hepatic steatosis due to the obesity epidemic, in conjunction with an aging population, may negatively impact the availability of suitable deceased(More)
Integral to the discovery of new pharmaceutical entities is the ability to predict in vivo pharmacokinetic parameters from early stage in vitro data generated prior to the onset of clinical testing. Within the pharmaceutical industry, a whole host of assay methods and mathematical models exist to predict the in vivo pharmacokinetic parameters of drug(More)
One of the fundamental challenges facing the development of new chemical entities within the pharmaceutical industry is the extrapolation of key in vivo parameters from in vitro cell culture assays and animal studies. Development of microscale devices and screening assays incorporating primary human cells can potentially provide better, faster and more(More)
Macrosteatotic livers exhibit elevated intrahepatic triglyceride (TG) levels in the form of large lipid droplets (LDs), reduced adenosine triphosphate (ATP) levels, and elevated reactive oxygen species (ROS) levels, and this contributes to their elevated sensitivity to ischemia/reperfusion injury during transplantation. Reducing macrosteatosis in living(More)
Thermal injury is among the most severe forms of trauma and its effects are both local and systemic. Response to thermal injury includes cellular protection mechanisms, inflammation, hypermetabolism, prolonged catabolism, organ dysfunction and immuno-suppression. It has been hypothesized that gene expression patterns in the liver will change with severe(More)
Previously we have used human hepatocytes in suspension by measuring the parent loss for prediction of metabolic clearance according to a 1(st)-order kinetic model. In this study, we evaluated a novel integrative approach using plated human hepatocytes to include both uptake processes and metabolism in a single assay. Test articles were added in the medium,(More)