Timothy J Hinterberger

Learn More
The muscle regulatory factors MRF4, myogenin, myf-5, and MyoD constitute a family of proteins that can function as muscle-specific transcriptional activators. Although this gene family has been extensively studied, a specific role for each factor during myogenesis remains to be determined. Understanding how these factors function requires a detailed(More)
The basic helix-loop-helix muscle regulatory factor (MRF) gene family encodes four distinct muscle-specific transcription factors known as MyoD, myogenin, Myf-5, and MRF4. These proteins represent key regulatory factors that control many aspects of skeletal myogenesis. Although the MRFs often exhibit overlapping functional activities, their distinct(More)
Vertebrate embryos express the transcription factor MRF4 during skeletal muscle differentiation. Previous studies of MRF4 expression in embryonic Xenopus laevis and its response to muscle denervation in adults have led to the suggestion that its transcription may be activated in myotomes and in multinucleate myofibers through an interaction with the motor(More)
We have cloned an 11.3-kb rat genomic DNA fragment encompassing the muscle regulatory factor 4 (MRF4) protein-coding sequence, 8.5 kb of 5'-flanking sequence, and 1.0 kb of 3'-flanking sequence. In order to study MRF4 gene expression, the rat myogenic cell line, L6J1-C, which expresses the endogenous MRF4 gene only in differentiated myofibers, was(More)
The muscle regulatory factor MRF4 is expressed in both embryonic and adult vertebrate skeletal muscle cells. In mammals the MRF4 gene has a complex cis-regulatory structure, with many kilobases (kb) of upstream sequence required for embryonic expression in transgenic mice. Here, initial functional comparison between Xenopus and mammalian MRF4 genes revealed(More)
MRF4 is a muscle-specific transcription factor that is expressed both in embryonic somites and later in fetal and adult muscle fibers. Cis-regulatory elements of the MRF4 gene responsible for its complex expression pattern have not yet been identified, although previous studies of the rat MRF4 gene have demonstrated the presence of enhancer activity located(More)
  • 1